File size: 8,014 Bytes
b244338 5d325b0 60dc201 5d325b0 60dc201 5d325b0 24baa84 5d325b0 60dc201 5d325b0 60dc201 5d325b0 60dc201 5d325b0 60dc201 5d325b0 60dc201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
license: apache-2.0
datasets:
- osunlp/MagicBrush
- TIGER-Lab/OmniEdit-Filtered-1.2M
language:
- en
base_model:
- black-forest-labs/FLUX.1-Fill-dev
pipeline_tag: image-to-image
library_name: diffusers
tags:
- art
---
<div align="center">
<h1>In-Context Edit: Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer</h1>
<div>
<a href="https://river-zhang.github.io/zechuanzhang//" target="_blank">Zechuan Zhang</a> 
<a href="https://horizonwind2004.github.io/" target="_blank">Ji Xie</a> 
<a href="https://yulu.net.cn/" target="_blank">Yu Lu</a> 
<a href="https://z-x-yang.github.io/" target="_blank">Zongxin Yang</a> 
<a href="https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN&oi=ao" target="_blank">Yi Yangβ</a> 
</div>
<div>
ReLER, CCAI, Zhejiang University; Harvard University
</div>
<div>
<sup>β</sup>Corresponding Author
</div>
<div>
<a href="https://arxiv.org/abs/2504.20690" target="_blank">Arxiv</a> 
<a href="https://huggingface.co/sanaka87/ICEdit-MoE-LoRA/tree/main" target="_blank">Huggingface π€</a> 
<a href="https://github.com/River-Zhang/ICEdit?tab=readme-ov-file" target="_blank">Github</a> 
<a href="https://huggingface.co/spaces/RiverZ/ICEdit" target="_blank">Huggingface Demo π€</a> 
<a href="https://river-zhang.github.io/ICEdit-gh-pages/" target="_blank">Project Page</a>
</div>
<div style="width: 80%; margin:auto;">
<img style="width:100%; display: block; margin: auto;" src="docs/images/teaser.png">
<p style="text-align: left;">We present In-Context Edit, a novel approach that achieves state-of-the-art instruction-based editing <b>using just 0.5% of the training data and 1% of the parameters required by prior SOTA methods</b>. The first row illustrates a series of multi-turn edits, executed with high precision, while the second and third rows highlight diverse, visually impressive single-turn editing results from our method.</p>
</div>
:open_book: For more visual results, go checkout our <a href="https://river-zhang.github.io/ICEdit-gh-pages/" target="_blank">project page</a>
This repository will contain the official implementation of _ICEdit_.
<div align="left">
# β οΈ Tips
### If you encounter such a failure case, please **try again with a different seed**!
- Our base model, FLUX, does not inherently support a wide range of styles, so a large portion of our dataset involves style transfer. As a result, the model **may sometimes inexplicably change your artistic style**.
- Our training dataset is **mostly targeted at realistic images**. For non-realistic images, such as **anime** or **blurry pictures**, the success rate of the editing **drop and could potentially affect the final image quality**.
- While the success rates for adding objects, modifying color attributes, applying style transfer, and changing backgrounds are high, the success rate for object removal is relatively lower due to the low quality of the OmniEdit removal dataset.
The current model is the one used in the experiments in the paper, trained with only 4 A800 GPUs (total `batch_size` = 2 x 2 x 4 = 16). In the future, we will enhance the dataset, and do scale-up, finally release a more powerful model.
# To Do List
- [x] Inference Code
- [ ] Inference-time Scaling with VLM
- [x] Pretrained Weights
- [ ] More Inference Demos
- [x] Gradio demo
- [ ] Comfy UI demo
- [ ] Training Code
# π News
- **[2025/4/30]** π₯ We release the [Huggingface Demo](https://huggingface.co/spaces/RiverZ/ICEdit) π€! Have a try!
- **[2025/4/30]** π₯ We release the inference code and [pretrained weights](https://huggingface.co/sanaka87/ICEdit-MoE-LoRA/tree/main) on Huggingface π€!
- **[2025/4/30]** π₯ We release the [paper](https://arxiv.org/abs/2504.20690) on arXiv!
- **[2025/4/29]** We release the [project page](https://river-zhang.github.io/ICEdit-gh-pages/) and demo video! Codes will be made available in next week~ Happy Labor Day!
# πΌ Installation
## Conda environment setup
```bash
conda create -n icedit python=3.10
conda activate icedit
pip install -r requirements.txt
pip install -U huggingface_hub
```
## Download pretrained weights
If you can connect to Huggingface, you don't need to download the weights. Otherwise, you need to download the weights to local.
- [Flux.1-fill-dev](https://huggingface.co/black-forest-labs/flux.1-fill-dev).
- [ICEdit-MoE-LoRA](https://huggingface.co/sanaka87/ICEdit-MoE-LoRA).
## Inference in bash (w/o VLM Inference-time Scaling)
Now you can have a try!
> Our model can **only edit images with a width of 512 pixels** (there is no restriction on the height). If you pass in an image with a width other than 512 pixels, the model will automatically resize it to 512 pixels.
> If you found the model failed to generate the expected results, please try to change the `--seed` parameter. Inference-time Scaling with VLM can help much to improve the results.
```bash
python scripts/inference.py --image assets/girl.png \
--instruction "Make her hair dark green and her clothes checked." \
--seed 42 \
```
Editing a 512Γ768 image requires 35 GB of GPU memory. If you need to run on a system with 24 GB of GPU memory (for example, an NVIDIA RTX3090), you can add the `--enable-model-cpu-offload` parameter.
```bash
python scripts/inference.py --image assets/girl.png \
--instruction "Make her hair dark green and her clothes checked." \
--enable-model-cpu-offload
```
If you have downloaded the pretrained weights locally, please pass the parameters during inference, as in:
```bash
python scripts/inference.py --image assets/girl.png \
--instruction "Make her hair dark green and her clothes checked." \
--flux-path /path/to/flux.1-fill-dev \
--lora-path /path/to/ICEdit-MoE-LoRA
```
## Inference in Gradio Demo
We provide a gradio demo for you to edit images in a more user-friendly way. You can run the following command to start the demo.
```bash
python scripts/gradio_demo.py --port 7860
```
Like the inference script, if you want to run the demo on a system with 24 GB of GPU memory, you can add the `--enable-model-cpu-offload` parameter. And if you have downloaded the pretrained weights locally, please pass the parameters during inference, as in:
```bash
python scripts/gradio_demo.py --port 7860 \
--flux-path /path/to/flux.1-fill-dev (optional) \
--lora-path /path/to/ICEdit-MoE-LoRA (optional) \
--enable-model-cpu-offload (optional) \
```
Then you can open the link in your browser to edit images.
### π¨ Enjoy your editing!
# Comparison with Commercial Models
<div align="center">
<div style="width: 80%; text-align: left; margin:auto;">
<img style="width:100%" src="docs/images/gpt4o_comparison.png">
<p style="text-align: left;">Compared with commercial models such as Gemini and GPT-4o, our methods are comparable to and even superior to these commercial models in terms of character ID preservation and instruction following. <b>We are more open-source than them, with lower costs, faster speed (it takes about 9 seconds to process one image), and powerful performance</b>.</p>
</div>
<div align="left">
# Bibtex
If this work is helpful for your research, please consider citing the following BibTeX entry.
```
@misc{zhang2025ICEdit,
title={In-Context Edit: Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer},
author={Zechuan Zhang and Ji Xie and Yu Lu and Zongxin Yang and Yi Yang},
year={2025},
eprint={2504.20690},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.20690},
}
``` |