Image-to-Image
Diffusers
English
art
sanaka87 commited on
Commit
5d325b0
Β·
verified Β·
1 Parent(s): 24baa84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -8
README.md CHANGED
@@ -1,10 +1,6 @@
1
- ---
2
- license: apache-2.0
3
- pipeline_tag: image-to-image
4
- library_name: diffusers
5
- ---
6
 
7
- # In-Context Edit: Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer
8
 
9
  <div>
10
  <a href="https://river-zhang.github.io/zechuanzhang//" target="_blank">Zechuan Zhang</a>&emsp;
@@ -21,7 +17,9 @@ library_name: diffusers
21
  </div>
22
  <div>
23
  <a href="https://arxiv.org/abs/2504.20690" target="_blank">Arxiv</a>&emsp;
 
24
  <a href="https://github.com/River-Zhang/ICEdit?tab=readme-ov-file" target="_blank">Github</a>&emsp;
 
25
  <a href="https://river-zhang.github.io/ICEdit-gh-pages/" target="_blank">Project Page</a>
26
  </div>
27
 
@@ -38,6 +36,18 @@ This repository will contain the official implementation of _ICEdit_.
38
 
39
  <div align="left">
40
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  # To Do List
42
 
43
  - [x] Inference Code
@@ -48,13 +58,14 @@ This repository will contain the official implementation of _ICEdit_.
48
  - [ ] Comfy UI demo
49
  - [ ] Training Code
50
 
51
- # News
 
52
  - **[2025/4/30]** πŸ”₯ We release the inference code and [pretrained weights](https://huggingface.co/sanaka87/ICEdit-MoE-LoRA/tree/main) on Huggingface πŸ€—!
53
  - **[2025/4/30]** πŸ”₯ We release the [paper](https://arxiv.org/abs/2504.20690) on arXiv!
54
  - **[2025/4/29]** We release the [project page](https://river-zhang.github.io/ICEdit-gh-pages/) and demo video! Codes will be made available in next week~ Happy Labor Day!
55
 
56
 
57
- # Installation
58
 
59
  ## Conda environment setup
60
 
@@ -62,6 +73,7 @@ This repository will contain the official implementation of _ICEdit_.
62
  conda create -n icedit python=3.10
63
  conda activate icedit
64
  pip install -r requirements.txt
 
65
  ```
66
 
67
  ## Download pretrained weights
 
1
+ <div align="center">
 
 
 
 
2
 
3
+ <h1>In-Context Edit: Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer</h1>
4
 
5
  <div>
6
  <a href="https://river-zhang.github.io/zechuanzhang//" target="_blank">Zechuan Zhang</a>&emsp;
 
17
  </div>
18
  <div>
19
  <a href="https://arxiv.org/abs/2504.20690" target="_blank">Arxiv</a>&emsp;
20
+ <a href="https://huggingface.co/sanaka87/ICEdit-MoE-LoRA/tree/main" target="_blank">Huggingface πŸ€—</a>&emsp;
21
  <a href="https://github.com/River-Zhang/ICEdit?tab=readme-ov-file" target="_blank">Github</a>&emsp;
22
+ <a href="https://huggingface.co/spaces/RiverZ/ICEdit" target="_blank">Huggingface Demo πŸ€—</a>&emsp;
23
  <a href="https://river-zhang.github.io/ICEdit-gh-pages/" target="_blank">Project Page</a>
24
  </div>
25
 
 
36
 
37
  <div align="left">
38
 
39
+ # ⚠️ Tips
40
+
41
+ ### If you encounter such a failure case, please **try again with a different seed**!
42
+
43
+ - Our base model, FLUX, does not inherently support a wide range of styles, so a large portion of our dataset involves style transfer. As a result, the model **may sometimes inexplicably change your artistic style**.
44
+
45
+ - Our training dataset is **mostly targeted at realistic images**. For non-realistic images, such as **anime** or **blurry pictures**, the success rate of the editing **drop and could potentially affect the final image quality**.
46
+
47
+ - While the success rates for adding objects, modifying color attributes, applying style transfer, and changing backgrounds are high, the success rate for object removal is relatively lower due to the low quality of the OmniEdit removal dataset.
48
+
49
+ The current model is the one used in the experiments in the paper, trained with only 4 A800 GPUs (total `batch_size` = 2 x 2 x 4 = 16). In the future, we will enhance the dataset, and do scale-up, finally release a more powerful model.
50
+
51
  # To Do List
52
 
53
  - [x] Inference Code
 
58
  - [ ] Comfy UI demo
59
  - [ ] Training Code
60
 
61
+ # πŸŽ† News
62
+ - **[2025/4/30]** πŸ”₯ We release the [Huggingface Demo](https://huggingface.co/spaces/RiverZ/ICEdit) πŸ€—! Have a try!
63
  - **[2025/4/30]** πŸ”₯ We release the inference code and [pretrained weights](https://huggingface.co/sanaka87/ICEdit-MoE-LoRA/tree/main) on Huggingface πŸ€—!
64
  - **[2025/4/30]** πŸ”₯ We release the [paper](https://arxiv.org/abs/2504.20690) on arXiv!
65
  - **[2025/4/29]** We release the [project page](https://river-zhang.github.io/ICEdit-gh-pages/) and demo video! Codes will be made available in next week~ Happy Labor Day!
66
 
67
 
68
+ # πŸ’Ό Installation
69
 
70
  ## Conda environment setup
71
 
 
73
  conda create -n icedit python=3.10
74
  conda activate icedit
75
  pip install -r requirements.txt
76
+ pip install -U huggingface_hub
77
  ```
78
 
79
  ## Download pretrained weights