model_name: "Mistral-7B-Math (Merged FP16 Checkpoint)"
repo: "samzheng/mistral-7b-math-merged"
base_model:
name: "unsloth/mistral-7b-instruct-v0.3-bnb-4bit"
url: "https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit"\
task: "Grade-school symbolic math word problems → Python code answers"
fine_tuning:
method: "LoRA adapters (r=16, α=16, dropout=0) merged into the base weights, FP16 precision"
parameters:
r: 16
alpha: 16
dropout: 0
dataset:
description: "6.7k Alpaca-formatted Q/A pairs with chain-of-thought + code"
splits:
- "symboliccode_cot_train"
- "symboliccode_cot_validation"
language: python
code:
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"samzheng/mistral-7b-math-merged",
torch_dtype="auto", device_map="auto"
)
tok = AutoTokenizer.from_pretrained("samzheng/mistral-7b-math-merged")
prompt = """Below is an instruction that describes a task...
### Instruction: Solve the problem using step-by-step reasoning and provide Python code.
### Input: Solve for x: 2x + 5 = 17
### Response:
"""
print(tok.decode(model.generate(**tok(prompt, return_tensors="pt").to(model.device),max_new_tokens=256)[0], skip_special_tokens=True))
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for samzheng/Mistral-SymbolicMath-7B
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3