distilbert-base-uncased-distilled-squad_07112024T120722
This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7930
- F1: 0.7643
- Learning Rate: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Rate |
---|---|---|---|---|---|
No log | 1.0 | 121 | 1.1749 | 0.5577 | 0.0000 |
No log | 2.0 | 242 | 0.9801 | 0.6593 | 0.0000 |
No log | 3.0 | 363 | 0.9184 | 0.6951 | 0.0000 |
No log | 4.0 | 484 | 0.8064 | 0.7480 | 0.0000 |
0.9941 | 5.0 | 605 | 0.7930 | 0.7643 | 0.0000 |
0.9941 | 6.0 | 726 | 0.8313 | 0.7793 | 0.0000 |
0.9941 | 7.0 | 847 | 0.8955 | 0.7814 | 0.0000 |
0.9941 | 8.0 | 968 | 0.9010 | 0.7963 | 0.0000 |
0.3299 | 9.0 | 1089 | 0.9855 | 0.7945 | 0.0000 |
0.3299 | 10.0 | 1210 | 0.9753 | 0.8036 | 0.0000 |
0.3299 | 11.0 | 1331 | 1.0115 | 0.8095 | 0.0000 |
0.3299 | 12.0 | 1452 | 1.0508 | 0.8052 | 7e-06 |
0.0991 | 13.0 | 1573 | 1.1102 | 0.8125 | 0.0000 |
0.0991 | 14.0 | 1694 | 1.1321 | 0.8146 | 0.0000 |
0.0991 | 15.0 | 1815 | 1.2166 | 0.8085 | 3e-06 |
0.0991 | 16.0 | 1936 | 1.1935 | 0.8109 | 0.0000 |
0.0349 | 17.0 | 2057 | 1.2277 | 0.8074 | 0.0000 |
0.0349 | 18.0 | 2178 | 1.2145 | 0.8091 | 5e-07 |
0.0349 | 19.0 | 2299 | 1.2306 | 0.8082 | 1e-07 |
0.0349 | 20.0 | 2420 | 1.2334 | 0.8080 | 0.0 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.