ELISARCyberAIEdge7B
Maintainer: Dr. Sabri Sallani Expertise: AI Research & Cybersecurity Adapter type: LoRA (Low-Rank Adaptation) Base model: mistralai/Mistral-7B-v0.1 (FP16) Intended use: Offline edge deployment for CyberAI & Blue-Team scenarios License: Apache 2.0 (see LICENSE)
📖 Overview
ELISARCyberAIEdge7B is a LoRA adapter crafted by Dr. Sabri Sallani—AI & cybersecurity researcher—to specialize Mistral-7B for offline, on-device CyberAI and “Blue AI” (defensive) applications. Once merged with the FP16 base, you obtain a single ~5 GB GGUF that runs natively on edge hardware (e.g., Raspberry Pi 4, Jetson Nano, NVIDIA T4) without internet access.
- 🔧 LoRA-only: Contains low-rank delta-weights for Mistral-7B.
- 🛠️ Edge-optimized: Full merged GGUF runs entirely offline on typical edge GPUs/accelerators.
- 🚀 Cybersecurity focus: Fine-tuned on “ELISAR CyberAI Edge” corpus—vulnerability descriptions, incident reports, secure-coding examples, threat intelligence summaries.
- 👤 Authored by Dr. Sabri Sallani: Published under the ELISAR initiative.
⚙️ Installation
Python dependencies
pip install transformers peft accelerate sentencepiece torch
(Optional) llama.cpp + GGUF tools (to merge and run offline)
# Clone and install gguf-py git clone --depth 1 https://github.com/ggml-org/llama.cpp.git pip install ./llama.cpp/gguf-py pip install llama-cpp-python
→ Use these tools to merge LoRA + base weights into a single GGUF.
🐍 Usage
1. Inference with transformers
+ PEFT
(online GPU/CPU)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
BASE_ID = "mistralai/Mistral-7B-v0.1"
ADAPTER_ID = "sallani/ELISARCyberAIEdge7B"
# 1) Load Mistral-7B base (FP16 or BF16) with automatic device placement
tokenizer = AutoTokenizer.from_pretrained(BASE_ID, use_fast=True)
base_model = AutoModelForCausalLM.from_pretrained(
BASE_ID,
torch_dtype="auto",
device_map="auto"
)
# 2) Load LoRA adapter on top
model = PeftModel.from_pretrained(
base_model,
ADAPTER_ID,
torch_dtype="auto",
device_map="auto"
)
model.eval()
# 3) Perform inference
prompt = (
"### Instruction:\n"
"Propose a set of secure-coding guidelines for Python web applications.\n"
"### Response:\n"
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
out = model.generate(
**inputs,
max_new_tokens=128,
temperature=0.8,
top_p=0.9,
repetition_penalty=1.1
)
print(tokenizer.decode(out[0], skip_special_tokens=True))
- device_map="auto" places weights on GPU/CPU automatically (FP16 when supported).
- Adjust sampling parameters (
temperature
,top_p
,repetition_penalty
) for your use case.
2. Offline Edge Deployment via llama.cpp
(Merged GGUF)
Merge LoRA + base into a single GGUF
python3 llama.cpp/convert_lora_to_gguf.py \ sallani/ELISARCyberAIEdge7B \ # LoRA repo or local folder --base-model-id mistralai/Mistral-7B-v0.1 \ # HF ID of FP16 base --outfile elisar_full_f16.gguf # Output GGUF (~5 GB)
- The script pulls the FP16 base automatically from HF, applies LoRA deltas, and writes a merged GGUF.
Run inference on edge
Copy
elisar_full_f16.gguf
to your edge device (Jetson Nano, Raspberry Pi 4 + GPU, NVIDIA T4).Use
llama.cpp
binary to run:./llama.cpp/main \ -m elisar_full_f16.gguf \ -p "### Instruction: Audit the following log entries for suspicious activity.\n---\n<log lines>\n---\n### Response:" \ --temp 0.7 \ --repeat_penalty 1.1 \ --n 128
No internet is required once the GGUF is on-device.
📐 Model Details
Base architecture: Mistral-7B-v0.1 (40 transformer layers, 4096-dim embedding, 32 heads, causal LM).
LoRA configuration:
- Rank = 64, α = 16
- Applied to Q/K/V and feed-forward projections
- Adapter snapshots ≈ 168 MB
Training corpus (ELISAR CyberAI Edge):
- Public vulnerability databases (CVE entries, CVSS scoring).
- Real-world incident reports (MITRE ATT&CK red vs. blue logs).
- Secure-coding patterns (OWASP Top 10, SAST examples).
- Blue-team playbooks and defensive strategies.
Hyperparameters:
- Learning rate = 1e-4, batch size = 16 per GPU, 3 epochs on 8×A100 (FP16).
- Validation on unseen CVE descriptions and red-team prompts.
Merged GGUF (FP16):
- ~5 GB total after merging and trimming unnecessary metadata for on-device use.
🔖 Prompt Guidelines
Structured prompt
### Instruction: <clear cybersecurity or defensive AI task> ### Response:
Recommended sampling
temperature=0.7–0.9
for balanced creativity.top_p=0.9
for nucleus sampling.repetition_penalty=1.1
to reduce loops.
language: en license: apache-2.0 tags:
- gguf
- quantized
- cybersecurity
- edge-llm
- lora
- mistral
- elisar model_name: ELISARCyberAIEdge7B-LoRA-GGUF pipeline_tag: text-generation datasets:
- custom widget:
- text: "What are the main threats targeting OT environments?"
📊 Stats & Adoption
- 🔄 Download tracking: Enabled
- 📥 Total downloads (last 30 days): auto-updated by HF
- 🧪 Being tested on:
- Jetson Nano (Ubuntu 20.04, CUDA 11.4)
- Raspberry Pi 4 (with Coral TPU)
- NVIDIA T4 + LLaMA.cpp
Want to share your benchmarks? Open an Issue or pull request.
⚠️ License & Citation
License: Apache 2.0 (see LICENSE).
Attribution:
Sallani, S. (2025). ELISARCyberAIEdge7B: LoRA adapter for Mistral-7B specializing in offline CyberAI Edge tasks. Hugging Face Model Hub:
sallani/ELISARCyberAIEdge7B
.
🛠️ Support & Contact
Report issues or feature requests: https://huggingface.co/sallani/ELISARCyberAIEdge7B/issues
Contact the author: Dr. Sabri Sallani • GitHub: @sallani • Email:
[email protected]
• LinkedIn: linkedin.com/in/sabri-sallani
Thank you for using ELISARCyberAIEdge7B. This adapter empowers secure, offline AI at the edge for next-gen CyberAI and Blue-Team applications.
Model tree for sallani/ELISARCyberAIEdge7B
Base model
mistralai/Mistral-7B-v0.3