VoxPolska
Collection
VoxPolska is an advanced Polish Text-to-Speech (TTS) model designed to convert written Polish text into
high-quality, natural-sounding speech.
β’
3 items
β’
Updated
!pip install snac torch transformers
import torch
import snac
from snac import SNAC
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from IPython.display import display, Audio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("salihfurkaan/VoxPolska-V1-Merged-16bit")
model = AutoModelForCausalLM.from_pretrained("salihfurkaan/VoxPolska-V1-Merged-16bit").to(device)
os.environ["HF_TOKEN"] = "your huggingface token here"
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
prompts = [
"CzeΕΔ, jestem duΕΌym modelem jΔzyka sztucznej inteligencji"
] #an example prompt
chosen_voice = None
prompts_ = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts]
all_input_ids = []
for prompt in prompts_:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
all_input_ids.append(input_ids)
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
all_modified_input_ids = []
for input_ids in all_input_ids:
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
all_modified_input_ids.append(modified_input_ids)
all_padded_tensors = []
all_attention_masks = []
max_length = max([x.shape[1] for x in all_modified_input_ids])
for modified_input_ids in all_modified_input_ids:
padding = max_length - modified_input_ids.shape[1]
padded_tensor = torch.cat([torch.full((1, padding), 128263, dtype=torch.int64), modified_input_ids], dim=1)
attention_mask = torch.cat([torch.zeros((1, padding), dtype=torch.int64), torch.ones((1, modified_input_ids.shape[1]), dtype=torch.int64)], dim=1)
all_padded_tensors.append(padded_tensor)
all_attention_masks.append(attention_mask)
all_padded_tensors = torch.cat(all_padded_tensors, dim=0).to(device)
all_attention_masks = torch.cat(all_attention_masks, dim=0).to(device)
generated_ids = model.generate(
input_ids=all_padded_tensors,
attention_mask=all_attention_masks,
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.95,
repetition_penalty=1.1,
num_return_sequences=1,
eos_token_id=128258,
use_cache=True
)
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
def redistribute_codes(code_list):
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list) + 1) // 7):
layer_1.append(code_list[7 * i])
layer_2.append(code_list[7 * i + 1] - 4096)
layer_3.append(code_list[7 * i + 2] - (2 * 4096))
layer_3.append(code_list[7 * i + 3] - (3 * 4096))
layer_2.append(code_list[7 * i + 4] - (4 * 4096))
layer_3.append(code_list[7 * i + 5] - (5 * 4096))
layer_3.append(code_list[7 * i + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1).unsqueeze(0).to(device),
torch.tensor(layer_2).unsqueeze(0).to(device),
torch.tensor(layer_3).unsqueeze(0).to(device)
]
audio_hat = snac_model.decode(codes)
return audio_hat
my_samples = []
for code_list in code_lists:
samples = redistribute_codes(code_list)
my_samples.append(samples)
if len(prompts) != len(my_samples):
raise Exception("Number of prompts and samples do not match")
else:
for i in range(len(my_samples)):
print(prompts[i])
samples = my_samples[i]
display(Audio(samples.detach().squeeze().to("cpu").numpy(), rate=24000))
del my_samples, samples
You can get your huggingface token from here
For questions, suggestions, and feedback, please open an issue on HuggingFace. You can also reach the author via: LinkedIn
Do not use this model for impersonation without consent, misinformation or deception (including fake news or fraudulent calls), or any illegal or harmful activity. By using this model, you agree to follow all applicable laws and ethical guidelines.
@misc{
title={salihfurkaan/VoxPolska-V1-Merged-16bit},
author={Salih Furkan Erik},
year={2025},
url={https://huggingface.co/salihfurkaan/VoxPolska-V1-Merged-16bit/}
}
Base model
meta-llama/Llama-3.2-3B-Instruct