metadata
language:
- da
license: mit
model-index:
- name: contract-ner-model-da
results:
- task:
type: token-classification
name: Token Classification
widget:
- >-
Medarbejderen ansættes til 35.000,00 kr. om måneden og arbejdsstedet er
Supergaden 21, 2000 Frederiksberg.
inference:
parameters:
aggregation_strategy: first
contract-ner-model-da
This model is a fine-tuned version of xlm-roberta-base on a custom contracts dataset. It achieves the following results on the evaluation set:
- Loss: 0.0100
- Micro F1: 0.9074
- Micro F1 No Misc: 0.9074
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4356
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro F1 No Misc |
---|---|---|---|---|---|
1.1722 | 4.88 | 200 | 0.0612 | 0.0 | 0.0 |
0.0341 | 9.76 | 400 | 0.0209 | 0.0 | 0.0 |
0.0158 | 14.63 | 600 | 0.0109 | 0.7233 | 0.7233 |
0.0085 | 19.51 | 800 | 0.0097 | 0.7727 | 0.7727 |
0.0057 | 24.39 | 1000 | 0.0084 | 0.8319 | 0.8319 |
0.0041 | 29.27 | 1200 | 0.0085 | 0.8630 | 0.8630 |
0.0031 | 34.15 | 1400 | 0.0089 | 0.8261 | 0.8261 |
0.0023 | 39.02 | 1600 | 0.0066 | 0.8785 | 0.8785 |
0.0017 | 43.9 | 1800 | 0.0106 | 0.8164 | 0.8164 |
0.0012 | 48.78 | 2000 | 0.0092 | 0.8730 | 0.8730 |
0.0008 | 53.66 | 2200 | 0.0076 | 0.8868 | 0.8868 |
0.0007 | 58.54 | 2400 | 0.0075 | 0.9017 | 0.9017 |
0.0005 | 63.41 | 2600 | 0.0096 | 0.8806 | 0.8806 |
0.0004 | 68.29 | 2800 | 0.0094 | 0.8852 | 0.8852 |
0.0004 | 73.17 | 3000 | 0.0084 | 0.9126 | 0.9126 |
0.0003 | 78.05 | 3200 | 0.0083 | 0.8986 | 0.8986 |
0.0003 | 82.93 | 3400 | 0.0093 | 0.9144 | 0.9144 |
0.0003 | 87.8 | 3600 | 0.0088 | 0.9231 | 0.9231 |
0.0001 | 92.68 | 3800 | 0.0080 | 0.9280 | 0.9280 |
0.0002 | 97.56 | 4000 | 0.0100 | 0.9074 | 0.9074 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3