This is a fine-tuned version of the DeepSeek-R1-Distill-Llama-8B model using the sa16feb24/jmpers1 dataset via Lightning AI. The model is merged with LoRA adapters for efficient deployment . Model Details Base Model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B Fine-tuning Method: LoRA (merged) Dataset: sa16feb24/jmpers1 Parameters: LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" ) Usage from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "sa16feb24/jmpers-lig-auto-1-dsr1-l8b", torch_dtype="auto" ) tokenizer = AutoTokenizer.from_pretrained( "sa16feb24/jmpers-lig-auto-1-dsr1-l8b" ) Example inference inputs = tokenizer("How did the AI chatbot project improve HR efficiency?", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0])) Training Configuration 7 Hardware: NVIDIA T4 GPU (Colab) Optimizations: 8-bit quantization Gradient checkpointing Mixed precision (FP16)
sa16feb24/jmpers1
LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" )
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained( "sa16feb24/jmpers-lig-auto-1-dsr1-l8b", torch_dtype="auto" ) tokenizer = AutoTokenizer.from_pretrained( "sa16feb24/jmpers-lig-auto-1-dsr1-l8b" )
inputs = tokenizer("How did the AI chatbot project improve HR efficiency?", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0]))
Hardware: NVIDIA T4 GPU (Colab) Optimizations: 8-bit quantization Gradient checkpointing Mixed precision (FP16)
Base model