pegasuscnn-dailymail_billsum_model

This model is a fine-tuned version of google/pegasus-cnn_dailymail on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6747
  • Rouge1: 0.4804
  • Rouge2: 0.2362
  • Rougel: 0.3218
  • Rougelsum: 0.3218
  • Gen Len: 123.3669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.6227 1.0 198 1.9091 0.4289 0.1938 0.2945 0.2947 120.1855
1.9714 2.0 396 1.8147 0.4517 0.2093 0.3059 0.3061 120.7742
1.903 3.0 594 1.7646 0.4607 0.2207 0.3098 0.3102 121.121
1.7973 4.0 792 1.7362 0.4719 0.2264 0.3179 0.3178 122.3185
1.7868 5.0 990 1.7137 0.4779 0.2314 0.3191 0.3192 123.2379
1.7457 6.0 1188 1.6958 0.4748 0.2296 0.3171 0.317 123.2056
1.6687 7.0 1386 1.6873 0.4795 0.2352 0.3216 0.3216 123.2702
1.6751 8.0 1584 1.6806 0.4835 0.2384 0.3248 0.3245 122.8266
1.6564 9.0 1782 1.6758 0.4814 0.2359 0.3217 0.3216 123.2984
1.6333 10.0 1980 1.6747 0.4804 0.2362 0.3218 0.3218 123.3669

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ruchita1010/pegasuscnn-dailymail_billsum_model

Finetuned
(166)
this model

Dataset used to train ruchita1010/pegasuscnn-dailymail_billsum_model

Evaluation results