YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Your Model Name
This model is LLama 3.1 8B finetuned using bahasa indonesia datasets.
Model Details
- Architecture: LLama 3.1 8B
- Dataset: rubythalib33/alpaca-cleaned-translated-id
- Fine-tuning: using QLoRA from unsloth to finetune it
Usage
alpaca_prompt = "Di bawah ini adalah instruksi yang menjelaskan tugas, dipasangkan dengan masukan yang memberikan konteks lebih lanjut. Tulis tanggapan yang melengkapi permintaan dengan tepat.
### Instruction:
#change this with curly braces
### Input:
#change this with curly braces
### Response:
#change this with curly braces
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "rubythalib33/llama3_1_8b_finetuned_bahasa_indonesia", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"coba lanjutkan bilangan fibbonaci dibawah dalam bentuk list", # instruction
"[1,1,2,3]", # input
"[1,1,2,3,", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = max_new_tokens)
- Downloads last month
- 70
Hardware compatibility
Log In
to view the estimation
4-bit
5-bit
8-bit
16-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.