YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Your Model Name

This model is LLama 3.1 8B finetuned using bahasa indonesia datasets.

Model Details

  • Architecture: LLama 3.1 8B
  • Dataset: rubythalib33/alpaca-cleaned-translated-id
  • Fine-tuning: using QLoRA from unsloth to finetune it

Usage


alpaca_prompt = "Di bawah ini adalah instruksi yang menjelaskan tugas, dipasangkan dengan masukan yang memberikan konteks lebih lanjut. Tulis tanggapan yang melengkapi permintaan dengan tepat.

### Instruction:
#change this with curly braces

### Input:
#change this with curly braces

### Response:
#change this with curly braces

from unsloth import FastLanguageModel
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = "rubythalib33/llama3_1_8b_finetuned_bahasa_indonesia", # YOUR MODEL YOU USED FOR TRAINING
        max_seq_length = max_seq_length,
        dtype = dtype,
        load_in_4bit = load_in_4bit,
    )
    FastLanguageModel.for_inference(model)

inputs = tokenizer(
[
    alpaca_prompt.format(
        "coba lanjutkan bilangan fibbonaci dibawah dalam bentuk list", # instruction
        "[1,1,2,3]", # input
        "[1,1,2,3,", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = max_new_tokens)
Downloads last month
70
GGUF
Model size
8.03B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

4-bit

5-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support