Edit model card

ryan03282024

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the properties dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2238
  • Ordinal Mae: 0.4441
  • Ordinal Accuracy: 0.6446
  • Na Accuracy: 0.7992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ordinal Mae Ordinal Accuracy Na Accuracy
0.3421 0.04 100 0.3331 0.8749 0.3817 0.6911
0.2813 0.09 200 0.3000 0.7492 0.5117 0.7954
0.2619 0.13 300 0.3019 0.6841 0.5273 0.7046
0.2863 0.17 400 0.2960 0.6538 0.5097 0.7336
0.2159 0.22 500 0.2602 0.5404 0.5660 0.8243
0.2235 0.26 600 0.2557 0.5015 0.5874 0.7780
0.285 0.31 700 0.2564 0.5000 0.6180 0.6853
0.2028 0.35 800 0.2862 0.6338 0.5068 0.7220
0.2006 0.39 900 0.2495 0.4830 0.6299 0.7587
0.2663 0.44 1000 0.2660 0.4893 0.6021 0.8610
0.2062 0.48 1100 0.2481 0.4713 0.6267 0.8436
0.1749 0.52 1200 0.2586 0.4959 0.6423 0.6737
0.2197 0.57 1300 0.2349 0.4841 0.5981 0.8031
0.2073 0.61 1400 0.2587 0.4878 0.6013 0.6950
0.1915 0.66 1500 0.2393 0.4771 0.6322 0.7683
0.2374 0.7 1600 0.2238 0.4441 0.6446 0.7992
0.2278 0.74 1700 0.2453 0.4410 0.6539 0.7278
0.2033 0.79 1800 0.2251 0.4584 0.6299 0.8185
0.1843 0.83 1900 0.2280 0.4446 0.6513 0.8127
0.1878 0.87 2000 0.2277 0.4454 0.6492 0.8127
0.2608 0.92 2100 0.2309 0.4517 0.6192 0.8494
0.201 0.96 2200 0.2459 0.4654 0.6406 0.7278
0.1736 1.0 2300 0.2438 0.4474 0.6475 0.7201
0.1374 1.05 2400 0.2368 0.4145 0.6622 0.7799
0.1334 1.09 2500 0.2424 0.4105 0.6732 0.7510
0.1319 1.14 2600 0.2336 0.4155 0.6712 0.7741
0.1549 1.18 2700 0.2525 0.4040 0.6625 0.7587
0.116 1.22 2800 0.2501 0.4425 0.6371 0.7664
0.1358 1.27 2900 0.2324 0.4136 0.6498 0.8185
0.1614 1.31 3000 0.2637 0.4353 0.6316 0.7915
0.1395 1.35 3100 0.2446 0.4020 0.6726 0.8012
0.1208 1.4 3200 0.2465 0.3946 0.6764 0.8243
0.1432 1.44 3300 0.2552 0.3919 0.6576 0.8900
0.1358 1.48 3400 0.2561 0.3984 0.6796 0.7896
0.0877 1.53 3500 0.2381 0.3901 0.6822 0.7876
0.1212 1.57 3600 0.2600 0.4001 0.6949 0.7259
0.1917 1.62 3700 0.2459 0.3889 0.6894 0.7819
0.1175 1.66 3800 0.2444 0.3937 0.6819 0.7741
0.1522 1.7 3900 0.2473 0.4010 0.6608 0.8050
0.1027 1.75 4000 0.2354 0.4208 0.6478 0.7838
0.1343 1.79 4100 0.2284 0.3977 0.6744 0.7992
0.1552 1.83 4200 0.2607 0.4045 0.6715 0.7780
0.1172 1.88 4300 0.2421 0.3971 0.6666 0.8282
0.1381 1.92 4400 0.2253 0.3813 0.6793 0.7857
0.1282 1.97 4500 0.2335 0.4146 0.6510 0.8436
0.0734 2.01 4600 0.2382 0.3802 0.6897 0.7896
0.1046 2.05 4700 0.2358 0.3695 0.6874 0.8012
0.0529 2.1 4800 0.2463 0.3596 0.7096 0.7934
0.0687 2.14 4900 0.2615 0.3921 0.6738 0.7857
0.0613 2.18 5000 0.2543 0.3651 0.6877 0.8108
0.0591 2.23 5100 0.2539 0.3693 0.6885 0.7915
0.0474 2.27 5200 0.2650 0.3722 0.6836 0.7992
0.0511 2.31 5300 0.2631 0.3681 0.6868 0.8127
0.0683 2.36 5400 0.2714 0.3630 0.6955 0.7838
0.0654 2.4 5500 0.2769 0.3673 0.6787 0.7992
0.0581 2.45 5600 0.2777 0.3628 0.6952 0.7992
0.072 2.49 5700 0.2919 0.3610 0.6888 0.7683
0.0737 2.53 5800 0.2807 0.3612 0.6984 0.7838
0.0667 2.58 5900 0.2926 0.3607 0.7001 0.7510
0.0669 2.62 6000 0.2875 0.3616 0.6891 0.7992
0.0535 2.66 6100 0.2854 0.3565 0.6960 0.7683
0.06 2.71 6200 0.2847 0.3501 0.7015 0.7741
0.0534 2.75 6300 0.2821 0.3495 0.7007 0.7625
0.0526 2.79 6400 0.2834 0.3853 0.6700 0.7625
0.0841 2.84 6500 0.2839 0.3504 0.7044 0.7490
0.0529 2.88 6600 0.2858 0.3595 0.6897 0.7819
0.0811 2.93 6700 0.2843 0.3480 0.7047 0.7799
0.0502 2.97 6800 0.2892 0.3483 0.7010 0.7819
0.0273 3.01 6900 0.2801 0.3454 0.6958 0.8108
0.0306 3.06 7000 0.2782 0.3444 0.7024 0.8031
0.0257 3.1 7100 0.2797 0.3352 0.7085 0.7934
0.0241 3.14 7200 0.2828 0.3343 0.7059 0.7954
0.0255 3.19 7300 0.2890 0.3364 0.6981 0.8050
0.0245 3.23 7400 0.2906 0.3392 0.7044 0.7992
0.0232 3.28 7500 0.2891 0.3338 0.7036 0.7857
0.0352 3.32 7600 0.2908 0.3443 0.6926 0.7896
0.0376 3.36 7700 0.2877 0.3315 0.7050 0.7915
0.025 3.41 7800 0.2889 0.3316 0.7076 0.7896
0.0225 3.45 7900 0.2902 0.3286 0.7070 0.7819
0.024 3.49 8000 0.2902 0.3270 0.7102 0.7954
0.0404 3.54 8100 0.2950 0.3294 0.7053 0.7896
0.0221 3.58 8200 0.2924 0.3271 0.7093 0.7934
0.0182 3.62 8300 0.2921 0.3237 0.7105 0.7934
0.0304 3.67 8400 0.2911 0.3231 0.7134 0.7857
0.0193 3.71 8500 0.2915 0.3221 0.7166 0.7838
0.0223 3.76 8600 0.2931 0.3235 0.7122 0.7896
0.0254 3.8 8700 0.2947 0.3214 0.7174 0.7876
0.0215 3.84 8800 0.2936 0.3202 0.7128 0.7857
0.0312 3.89 8900 0.2956 0.3210 0.7134 0.7857
0.0189 3.93 9000 0.2946 0.3210 0.7125 0.7876
0.021 3.97 9100 0.2949 0.3194 0.7145 0.7876

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
22
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rshrott/ryan03282024

Finetuned
(1683)
this model