π€ gama-12b
gama-12b is a 12-billion parameter language model created through the strategic merge of multiple specialized models. This model combines the capabilities of different architectures to offer a more robust and versatile conversational experience.
π Overview
This model was developed using the DARE TIES (Drop And REscale with Ties-Elimination) technique, an advanced model merging methodology that allows for the efficient combination of different specializations into a single cohesive model.
π§ Base Models Used
gama-12b is the result of merging the following models:
π οΈ Merge Tool
The merge was performed using LazyMergekit, a tool that facilitates the process of merging language models.
βοΈ Technical Configuration
Merge Parameters
models:
- model: soob3123/amoral-gemma3-12B-v2-qat
parameters:
density: 0.6
weight: 0.33
- model: allura-org/Gemma-3-Glitter-12B
parameters:
density: 0.6
weight: 0.33
- model: soob3123/Veiled-Calla-12B
parameters:
density: 0.6
weight: 0.34
merge_method: dare_ties
base_model: unsloth/gemma-3-12b-it-qat
parameters:
normalize: true
int8_mask: true
device: auto
dtype: float16
Technical Specifications
- Architecture: Gemma-3 12B
- Merge Method: DARE TIES
- Precision: Float16
- Quantization: QAT (Quantization Aware Training)
- Normalization: Enabled
- Int8 Mask: Enabled
π» How to Use
Installing Dependencies
pip install -qU transformers accelerate torch
Basic Usage Example
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
# Model configuration
model_name = "rodrigomt/gama-12b"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
# Prepare the message
messages = [
{"role": "user", "content": "What is a large language model?"}
]
# Apply chat template
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Pipeline configuration
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
)
# Text generation
outputs = pipeline(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
repetition_penalty=1.1
)
print(outputs[0]["generated_text"])
Advanced Usage Example
# For more granular control
inputs = tokenizer.encode(prompt, return_tensors="pt")
attention_mask = inputs.ne(tokenizer.pad_token_id)
with torch.no_grad():
outputs = model.generate(
inputs,
attention_mask=attention_mask,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
π― Key Features
- Versatility: Combines capabilities from multiple specialized models
- Efficiency: Optimized with QAT quantization for better performance
- Compatibility: Fully compatible with the Transformers library
- Scalability: Supports deployment on different hardware configurations
β οΈ System Requirements
Recommended Minimums
- RAM: 32GB
- VRAM: 24GB (GPU)
- Storage: 50GB available
Ideal Configuration
- RAM: 64GB+
- VRAM: 40GB+ (GPU)
- GPU: A6000, A100, or higher
π License
This model is licensed under the Gemma License.
- Downloads last month
- 24
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for rodrigomt/gama-12b
Merge model
this model