Commit
1ba6588
1 Parent(s): 0bcbf23

Push model using huggingface_hub.

Browse files
Files changed (2) hide show
  1. README.md +5 -104
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,108 +1,9 @@
1
  ---
2
- license: mit
3
- language:
4
- - en
5
- pipeline_tag: robotics
6
- library_name: transformers
7
  tags:
8
- - robotics
9
- - pytorch
10
- - multimodal
11
- - pretraining
12
- - vla
13
- - diffusion
14
- - rdt
15
  ---
16
- # RDT-170M
17
 
18
- ![](head.mp4)
19
- RDT-170M is a 170M-parameter imitation learning Diffusion Transformer ***(RDT(small) in ablation)***. Given language instruction and RGB images of up to three views, RDT can predict the next
20
- 64 robot actions. RDT is compatible with almost all modern mobile manipulators, from single-arm to dual-arm, joint to EEF, position to velocity, and even wheeled locomotion.
21
-
22
- All the [code](https://github.com/thu-ml/RoboticsDiffusionTransformer/tree/main?tab=readme-ov-file), pre-trained model weights, and [data](https://huggingface.co/datasets/robotics-diffusion-transformer/rdt-ft-data) are licensed under the MIT license.
23
-
24
- Please refer to our [project page](https://rdt-robotics.github.io/rdt-robotics/) and [paper](https://arxiv.org/pdf/2410.07864) for more information.
25
-
26
- ## Model Details
27
-
28
- - **Developed by:** The RDT team consisting of researchers from the [TSAIL group](https://ml.cs.tsinghua.edu.cn/) at Tsinghua University
29
- - **Task Type:** Vision-Language-Action (language, image => robot actions)
30
- - **Modle Type:** Diffusion Policy with Transformers
31
- - **License:** MIT
32
- - **Language(s) (NLP):** en
33
- - **Multi-Modal Encoders:**
34
- - **Vision Backbone:** [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384)
35
- - **Language Model:** [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl)
36
- - **Pre-Training Datasets:** 46 datasets consisting of [RT-1 Dataset](https://robotics-transformer1.github.io/), [RH20T](https://rh20t.github.io/), [DROID](https://droid-dataset.github.io/), [BridgeData V2](https://rail-berkeley.github.io/bridgedata/), [RoboSet](https://robopen.github.io/roboset/), and a subset of [Open X-Embodiment](https://robotics-transformer-x.github.io/). See [this link](https://github.com/thu-ml/RoboticsDiffusionTransformer/blob/main/docs/pretrain.md#download-and-prepare-datasets) for a detailed list.
37
- - **Repository:** https://github.com/thu-ml/RoboticsDiffusionTransformer
38
- - **Paper :** https://arxiv.org/pdf/2410.07864
39
- - **Project Page:** https://rdt-robotics.github.io/rdt-robotics/
40
-
41
- ## Uses
42
-
43
- RDT takes language instruction, RGB images (of up to three views), control frequency (if any), and proprioception as input and predicts the next 64 robot actions.
44
- RDT supports control of almost all robot manipulators with the help of the unified action space, which
45
- includes all the main physical quantities of the robot manipulator (e.g., the end-effector and joint, position and velocity, and the wheeled locomotion).
46
- To deploy on your robot platform, you need to fill the relevant quantities of the raw action vector into the unified space vector. See [our repository](https://github.com/thu-ml/RoboticsDiffusionTransformer) for more information.
47
-
48
- **Out-of-Scope**: Due to the embodiment gap, RDT cannot yet generalize to new robot platforms (not seen in the pre-training datasets).
49
- In this case, we recommend collecting a small dataset of the target robot and then using it to fine-tune RDT.
50
- See [our repository](https://github.com/thu-ml/RoboticsDiffusionTransformer) for a tutorial.
51
-
52
- Here's an example of how to use the RDT-1B model for inference on a robot:
53
- ```python
54
- # Please first clone the repository and install dependencies
55
- # Then switch to the root directory of the repository by "cd RoboticsDiffusionTransformer"
56
-
57
- # Import a create function from the code base
58
- from scripts.agilex_model import create_model
59
-
60
- # Names of cameras used for visual input
61
- CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist']
62
- config = {
63
- 'episode_len': 1000, # Max length of one episode
64
- 'state_dim': 14, # Dimension of the robot's state
65
- 'chunk_size': 64, # Number of actions to predict in one step
66
- 'camera_names': CAMERA_NAMES,
67
- }
68
- pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384"
69
- # Create the model with the specified configuration
70
- model = create_model(
71
- args=config,
72
- dtype=torch.bfloat16,
73
- pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path,
74
- pretrained='robotics-diffusion-transformer/rdt-1b',
75
- control_frequency=25,
76
- )
77
-
78
- # Start inference process
79
- # Load the pre-computed language embeddings
80
- # Refer to scripts/encode_lang.py for how to encode the language instruction
81
- lang_embeddings_path = 'your/language/embedding/path'
82
- text_embedding = torch.load(lang_embeddings_path)['embeddings']
83
- images: List(PIL.Image) = ... # The images from last 2 frames
84
- proprio = ... # The current robot state
85
- # Perform inference to predict the next `chunk_size` actions
86
- actions = policy.step(
87
- proprio=proprio,
88
- images=images,
89
- text_embeds=text_embedding
90
- )
91
- ```
92
-
93
- <!-- RDT-1B supports finetuning on custom datasets, deploying and inferencing on real robots, and retraining the model.
94
- Please refer to [our repository](https://github.com/GeneralEmbodiedSystem/RoboticsDiffusionTransformer/blob/main/docs/pretrain.md) for all the above guides. -->
95
-
96
-
97
- ## Citation
98
-
99
- If you find our work helpful, please cite us:
100
- ```bibtex
101
- @article{liu2024rdt,
102
- title={RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation},
103
- author={Liu, Songming and Wu, Lingxuan and Li, Bangguo and Tan, Hengkai and Chen, Huayu and Wang, Zhengyi and Xu, Ke and Su, Hang and Zhu, Jun},
104
- journal={arXiv preprint arXiv:2410.07864},
105
- year={2024}
106
- }
107
- ```
108
- Thank you!
 
1
  ---
 
 
 
 
 
2
  tags:
3
+ - model_hub_mixin
4
+ - pytorch_model_hub_mixin
 
 
 
 
 
5
  ---
 
6
 
7
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
+ - Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b
9
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:925422945ece2bd168793ad818bdd0154d0a6e32f69fd90b466f7e0b3dd8f886
3
  size 332520250
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e87fccee0292b25ee4f714670dd7d8da8876ea092da3744db3292db070b7133
3
  size 332520250