robiulawaldev's picture
End of training
7fdc3c6 verified
|
raw
history blame
7.01 kB
metadata
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: f263595e-91dc-4dbc-aee8-42a3b57e2dde
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 902ecde58c94c532_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/902ecde58c94c532_train_data.json
  type:
    field_input: original_version
    field_instruction: title
    field_output: french_version
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 300
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: robiulawaldev/f263595e-91dc-4dbc-aee8-42a3b57e2dde
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 17953
micro_batch_size: 4
mlflow_experiment_name: /tmp/902ecde58c94c532_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fb292aae-3bf8-4614-82a9-5c9ce7b3f999
wandb_project: SN56-36
wandb_run: your_name
wandb_runid: fb292aae-3bf8-4614-82a9-5c9ce7b3f999
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

f263595e-91dc-4dbc-aee8-42a3b57e2dde

This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 17953

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 2.4685
1.6913 0.0510 300 1.6545
1.5228 0.1021 600 1.5083
1.4568 0.1531 900 1.4199
1.3707 0.2042 1200 1.3690
1.3347 0.2552 1500 1.3241
1.2919 0.3063 1800 1.2925
1.2462 0.3573 2100 1.2656
1.2175 0.4083 2400 1.2438
1.2624 0.4594 2700 1.2318
1.216 0.5104 3000 1.2081
1.2401 0.5615 3300 1.1880
1.2172 0.6125 3600 1.1763
1.1768 0.6635 3900 1.1606
1.1733 0.7146 4200 1.1570
1.1503 0.7656 4500 1.1437
1.1261 0.8167 4800 1.1351
1.124 0.8677 5100 1.1233
1.1614 0.9188 5400 1.1161
1.1346 0.9698 5700 1.1063
1.0797 1.0208 6000 1.1005
1.0431 1.0719 6300 1.0961
1.0795 1.1229 6600 1.0894
1.0587 1.1740 6900 1.0853
1.0899 1.2250 7200 1.0778
1.0412 1.2761 7500 1.0717
1.0829 1.3271 7800 1.0683
1.0652 1.3781 8100 1.0639
1.0164 1.4292 8400 1.0583
1.0589 1.4802 8700 1.0534
1.0337 1.5313 9000 1.0461
1.0161 1.5823 9300 1.0440
1.0422 1.6333 9600 1.0420
1.0025 1.6844 9900 1.0345
0.9963 1.7354 10200 1.0337
1.0322 1.7865 10500 1.0311
1.0424 1.8375 10800 1.0278
0.9842 1.8886 11100 1.0204
0.9802 1.9396 11400 1.0150
0.9941 1.9906 11700 1.0127
0.9759 2.0417 12000 1.0113
0.9635 2.0927 12300 1.0088
0.941 2.1438 12600 1.0050
0.9635 2.1948 12900 1.0041
0.9709 2.2459 13200 1.0028
0.9631 2.2969 13500 1.0006
0.9533 2.3479 13800 0.9955
0.9762 2.3990 14100 0.9941
0.9899 2.4500 14400 0.9924
0.9706 2.5011 14700 0.9898
0.9315 2.5521 15000 0.9859
0.9224 2.6031 15300 0.9868
1.0113 2.6542 15600 0.9829
0.9251 2.7052 15900 0.9817
1.0008 2.7563 16200 0.9793
0.9723 2.8073 16500 0.9787
0.9673 2.8584 16800 0.9739
0.9519 2.9094 17100 0.9714
0.9699 2.9604 17400 0.9713
0.93 3.0115 17700 0.9729

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1