robiulawaldev's picture
End of training
806239f verified
|
raw
history blame
4.62 kB
metadata
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-1.7B-Instruct
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: b368c922-3f39-4946-92ff-329b272ceb41
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM2-1.7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 0c1367355c2510f8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0c1367355c2510f8_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: robiulawaldev/b368c922-3f39-4946-92ff-329b272ceb41
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 14965
micro_batch_size: 4
mlflow_experiment_name: /tmp/0c1367355c2510f8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a6d954dd-91ca-429a-9051-83e5cd6e3724
wandb_project: SN56-36
wandb_run: your_name
wandb_runid: a6d954dd-91ca-429a-9051-83e5cd6e3724
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

b368c922-3f39-4946-92ff-329b272ceb41

This model is a fine-tuned version of unsloth/SmolLM2-1.7B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 14965

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 0.6366
0.2955 0.0814 500 0.2978
0.2791 0.1627 1000 0.2879
0.283 0.2441 1500 0.2800
0.2736 0.3255 2000 0.2734
0.2768 0.4068 2500 0.2695
0.2699 0.4882 3000 0.2670
0.2636 0.5695 3500 0.2636
0.2505 0.6509 4000 0.2614
0.252 0.7323 4500 0.2607
0.2611 0.8136 5000 0.2593
0.2602 0.8950 5500 0.2575
0.2508 0.9764 6000 0.2556
0.2216 1.0577 6500 0.2587
0.2375 1.1391 7000 0.2572
0.2349 1.2205 7500 0.2566

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1