YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
# Malay Claim Classifier
This model is fine-tuned on a dataset of Malaysian claims to classify them into different categories for fact-checking purposes. It's specifically designed to categorize claims in Bahasa Malaysia into 9 main categories.
Model Description
- Model Type: BERT-based sequence classification
- Language: Malay/Bahasa Malaysia
- Base Model: rmtariq/malay_classification
- Number of Labels: 9
- Labels: agama, alam sekitar, ekonomi, kesihatan, pendidikan, pengguna, politik, sosial, teknologi
- Model Size: 178M parameters
- Tensor Type: F32
Category Descriptions
- agama: Religious claims, including halal/haram issues
- alam sekitar: Environmental claims, climate, weather, natural disasters
- ekonomi: Economic claims, business, finance, trade
- kesihatan: Health claims, diseases, treatments, mental health
- pendidikan: Education claims, schools, universities, exams
- pengguna: Consumer product claims, brands, quality, safety
- politik: Political claims, government, policies, elections
- sosial: Social claims, culture, entertainment, sports, crime
- teknologi: Technology claims, digital, internet, innovations
Usage
from transformers import BertTokenizer, BertForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = BertTokenizer.from_pretrained("rmtariq/malay_claim_classifier_v2")
model = BertForSequenceClassification.from_pretrained("rmtariq/malay_claim_classifier_v2")
# Prepare input
example_claim = "Benarkah pewarna merah yang digunakan dalam makanan ringan dihasilkan daripada serangga dan tidak halal?"
inputs = tokenizer(example_claim, return_tensors="pt", padding=True, truncation=True, max_length=128)
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
predicted_class = torch.argmax(predictions, dim=1).item()
label = model.config.id2label[predicted_class]
print(f"Claim: {example_claim}")
print(f"Predicted Category: {label}")
- Downloads last month
- 75
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support