Whisper-medium-BTC

This model is a fine-tuned version of openai/whisper-medium.en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3875
  • Wer: 6.5315

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 600
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7348 2.01 50 0.7378 9.3091
0.5276 4.02 100 0.5290 8.6125
0.3585 7.0 150 0.3875 6.5315
0.2924 9.01 200 0.3548 6.6779
0.2506 11.02 250 0.3364 6.7888
0.1946 14.01 300 0.3262 7.1482
0.1411 16.02 350 0.3329 7.2104
0.1005 19.0 400 0.3422 7.5565
0.0535 21.01 450 0.3532 7.1793
0.0259 23.02 500 0.3456 7.5121
0.0137 26.0 550 0.3587 7.6541
0.0078 28.02 600 0.3591 7.3524
0.0041 30.02 650 0.3672 7.3035
0.0026 33.01 700 0.3962 7.3213
0.0022 35.02 750 0.3997 7.3524
0.0022 38.0 800 0.4025 7.3302

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.