metadata
license: other
license_name: server-side-public-license
license_link: https://www.mongodb.com/legal/licensing/server-side-public-license
tags:
- diffusion
- virtual try-on
- virtual try-off
- image generation
- fashion
- e-commerce
base_model:
- CompVis/stable-diffusion-v1-4
pipeline_tag: image-to-image
library_name: diffusers
TryOffDiff
The models proposed in the paper "TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models" [paper] [project page]:
tryoffdiff.pth
: The pre-trained StableDiffusion-v1.4 fine-tuned onVITON-HD-train
dataset..pth
: A U-Net trained from scratch onVITON-HD-train
dataset..pth
:
Usage
from huggingface_hub import hf_hub_download
class TryOffDiff(nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
self.proj = nn.Linear(1024, 77)
self.norm = nn.LayerNorm(768)
def adapt_embeddings(self, x):
x = self.transformer(x)
x = self.proj(x.permute(0, 2, 1)).permute(0, 2, 1)
return self.norm(x)
def forward(self, noisy_latents, t, cond_emb):
cond_emb = self.adapt_embeddings(cond_emb)
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
path_model = hf_hub_download(
repo_id="rizavelioglu/tryoffdiff",
filename="tryoffdiff.pth", # or one of ablations ["ldm-1", "ldm-2", "ldm-3", ...]
)
net = TryOffDiff()
net.load_state_dict(torch.load(path_model, weights_only=False))
net.eval().to(device)
Check out the demo code on HuggingFace Spaces for the full running example.
Also, check out GitHub repository to get more information on training, inference, and evaluation.
License
TL;DR: Not available for commercial use, unless the FULL source code is shared!
This project is intended solely for academic research. No commercial benefits are derived from it.
Models are licensed under Server Side Public License (SSPL)
Citation
If you find this repository useful in your research, please consider giving a star ⭐ and a citation:
@article{velioglu2024tryoffdiff,
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2024},
note = {\url{https://doi.org/nt3n}}
}