See axolotl config
axolotl version: 0.6.0
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
# optionally might have model_type or tokenizer_type
# model_type: AutoModelForCausalLM
# tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
datasets:
- path: improver/length_human_train.jsonl
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: /data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-7B_full_4096
sequence_len: 4096
sample_packing: false
pad_to_sequence_len:
wandb_project: "DeepSeek-R1-Distill-Qwen-7B_full_4096"
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: true
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 2
xformers_attention:
flash_attention:
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 256
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-7B_full_4096
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-7B on the improver/length_human_train.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- total_eval_batch_size: 6
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2637 | 0.5043 | 58 | 0.2389 |
0.1027 | 1.0087 | 116 | 0.2581 |
0.0403 | 1.5130 | 174 | 0.2721 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for riyazahuja/Improver-DeepSeek-R1-Distill-Qwen-7B_full_4096
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B