Text Generation
Transformers
PyTorch
Safetensors
Japanese
English
qwen
custom_code

rinna/nekomata-14b-instruction

rinna-icon

Overview

The model is the instruction-tuned version of rinna/nekomata-14b. It adopts the Alpaca input format.


Benchmarking

Please refer to rinna's LM benchmark page.


How to use the model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/nekomata-14b-instruction", trust_remote_code=True)

# Use GPU with bf16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-14b-instruction", device_map="auto", trust_remote_code=True, bf16=True)

# Use GPU with fp16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-14b-instruction", device_map="auto", trust_remote_code=True, fp16=True)

# Use CPU
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-14b-instruction", device_map="cpu", trust_remote_code=True)

# Automatically select device and precision
model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-14b-instruction", device_map="auto", trust_remote_code=True)

instruction = "次の日本語を英語に翻訳してください。"
input = "大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。"
prompt = f"""
以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。

### 指示:
{instruction}

### 入力:
{input}

### 応答:
"""
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=200,
        do_sample=True,
        temperature=0.5,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。

### 指示:
次の日本語を英語に翻訳してください。

### 入力:
大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使 用して自己教師あり学習または半教師あり学習によって訓練が行われる。

### 応答:
 A large language model (LLM) is a computer language model composed of artificial neural networks with many parameters (from tens of millions to billions) trained by self-supervised learning or semi-supervised learning using a large amount of unlabeled text.<|endoftext|>
"""

Tokenization

Please refer to rinna/nekomata-14b for tokenization details.


How to cite

@misc{rinna-nekomata-14b-instruction,
    title = {rinna/nekomata-14b-instruction},
    author = {Zhao, Tianyu and Sawada, Kei},
    url = {https://huggingface.co/rinna/nekomata-14b-instruction}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}

License

Tongyi Qianwen LICENSE AGREEMENT

Downloads last month
399
Safetensors
Model size
14.2B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for rinna/nekomata-14b-instruction

Base model

Qwen/Qwen-14B
Finetuned
rinna/nekomata-14b
Finetuned
(1)
this model
Adapters
2 models
Quantizations
3 models

Datasets used to train rinna/nekomata-14b-instruction

Space using rinna/nekomata-14b-instruction 1

Collection including rinna/nekomata-14b-instruction