swin-CEMEDE

This model is a fine-tuned version of microsoft/swin-base-simmim-window6-192 on the cemede dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0793
  • Accuracy: 0.7228
  • F1: 0.6941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.7728 0.0769 100 2.5932 0.2801 0.0798
2.0806 0.1538 200 2.6331 0.1826 0.0716
1.6491 0.2308 300 2.4971 0.2087 0.0878
1.3916 0.3077 400 2.4101 0.3400 0.1552
1.3267 0.3846 500 2.4311 0.2977 0.1745
1.2974 0.4615 600 1.8822 0.3913 0.2567
1.158 0.5385 700 2.2153 0.3799 0.2688
1.1604 0.6154 800 2.3287 0.4184 0.2898
0.9037 0.6923 900 1.8374 0.4736 0.3246
1.1772 0.7692 1000 1.8466 0.5178 0.4325
0.5862 0.8462 1100 2.0423 0.4779 0.4158
0.7642 0.9231 1200 1.7194 0.5307 0.4573
0.5552 1.0 1300 2.1011 0.5036 0.4280
0.5726 1.0769 1400 1.6062 0.5944 0.5339
0.5396 1.1538 1500 1.7786 0.5506 0.4801
0.598 1.2308 1600 1.1961 0.6543 0.5563
0.5893 1.3077 1700 1.9011 0.5925 0.4738
0.3518 1.3846 1800 1.5427 0.6063 0.5722
0.6365 1.4615 1900 1.5974 0.6163 0.5053
0.4551 1.5385 2000 1.1084 0.7071 0.6476
0.4621 1.6154 2100 1.9120 0.6082 0.5921
0.6878 1.6923 2200 1.5156 0.6415 0.5855
0.2327 1.7692 2300 1.4180 0.6581 0.6470
0.3159 1.8462 2400 1.3047 0.7009 0.6763
0.3304 1.9231 2500 1.6771 0.6643 0.6300
0.2685 2.0 2600 1.0793 0.7228 0.6941
0.0977 2.0769 2700 1.7003 0.6719 0.6534
0.3745 2.1538 2800 1.6521 0.6885 0.6616
0.2402 2.2308 2900 1.7074 0.6790 0.6616
0.3905 2.3077 3000 1.4096 0.7194 0.7111
0.0724 2.3846 3100 1.4934 0.7209 0.7247
0.2392 2.4615 3200 1.3840 0.7199 0.6977
0.33 2.5385 3300 1.3628 0.7256 0.7179
0.1502 2.6154 3400 1.2440 0.7542 0.7311
0.2107 2.6923 3500 1.2003 0.7708 0.7660
0.1965 2.7692 3600 1.7550 0.7071 0.7403

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
33
Safetensors
Model size
86.8M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for redbioma/swin-CEMEDE

Finetuned
(2)
this model