deit-CEMEDE

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the cemede dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8585
  • Accuracy: 0.7884
  • F1: 0.7973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5433 0.0769 100 1.4163 0.6339 0.4316
0.8153 0.1538 200 1.2107 0.7014 0.6080
0.4572 0.2308 300 0.9056 0.7513 0.6750
0.5055 0.3077 400 1.2329 0.6572 0.5795
0.5404 0.3846 500 1.1346 0.7156 0.6567
0.3872 0.4615 600 1.0172 0.7689 0.6869
0.2404 0.5385 700 1.1939 0.7299 0.7135
0.3426 0.6154 800 1.3790 0.7123 0.7013
0.3455 0.6923 900 1.2071 0.7223 0.6945
0.3843 0.7692 1000 2.4214 0.5982 0.6507
0.1851 0.8462 1100 0.9815 0.7618 0.7713
0.1783 0.9231 1200 0.8585 0.7884 0.7973
0.2812 1.0 1300 1.4161 0.7394 0.7475
0.0788 1.0769 1400 1.0477 0.7770 0.7855
0.1853 1.1538 1500 1.0843 0.7789 0.7907
0.0463 1.2308 1600 1.1819 0.7855 0.7422
0.1846 1.3077 1700 0.9227 0.7936 0.7835
0.0886 1.3846 1800 1.3368 0.7556 0.7603
0.1971 1.4615 1900 1.3276 0.7527 0.7413
0.2069 1.5385 2000 1.3338 0.7727 0.7805
0.1479 1.6154 2100 1.2606 0.7718 0.8021
0.1076 1.6923 2200 0.9955 0.8008 0.8183

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
103
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for redbioma/deit-CEMEDE

Finetuned
(80)
this model