SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What types of systems are considered time-critical according to the context?',
'where possible, available before the harm occurs. Time-critical systems include, but are not limited to, \nvoting-related systems, automated building access and other access systems, systems that form a critical \ncomponent of healthcare, and systems that have the ability to withhold wages or otherwise cause \nimmediate financial penalties. \nEffective. The organizational structure surrounding processes for consideration and fallback should \nbe designed so that if the human decision-maker charged with reassessing a decision determines that it \nshould be overruled, the new decision will be effectively enacted. This includes ensuring that the new',
'Discrimination \nProtections \n \n WHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated systems are meant to serve as a blueprint for the development of additional \ntechnical standards and practices that are tailored for particular sectors and contexts. \nDemonstrate that the system protects against algorithmic discrimination \nIndependent evaluation. As described in the section on Safe and Effective Systems, entities should allow \nindependent evaluation of potential algorithmic discrimination caused by automated systems they use or',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8448 |
cosine_accuracy@3 | 0.9483 |
cosine_accuracy@5 | 0.977 |
cosine_accuracy@10 | 0.9943 |
cosine_precision@1 | 0.8448 |
cosine_precision@3 | 0.3161 |
cosine_precision@5 | 0.1954 |
cosine_precision@10 | 0.0994 |
cosine_recall@1 | 0.8448 |
cosine_recall@3 | 0.9483 |
cosine_recall@5 | 0.977 |
cosine_recall@10 | 0.9943 |
cosine_ndcg@10 | 0.9249 |
cosine_mrr@10 | 0.902 |
cosine_map@100 | 0.9022 |
dot_accuracy@1 | 0.8448 |
dot_accuracy@3 | 0.9483 |
dot_accuracy@5 | 0.977 |
dot_accuracy@10 | 0.9943 |
dot_precision@1 | 0.8448 |
dot_precision@3 | 0.3161 |
dot_precision@5 | 0.1954 |
dot_precision@10 | 0.0994 |
dot_recall@1 | 0.8448 |
dot_recall@3 | 0.9483 |
dot_recall@5 | 0.977 |
dot_recall@10 | 0.9943 |
dot_ndcg@10 | 0.9249 |
dot_mrr@10 | 0.902 |
dot_map@100 | 0.9022 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 522 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 522 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 19.05 tokens
- max: 35 tokens
- min: 10 tokens
- mean: 116.38 tokens
- max: 161 tokens
- Samples:
sentence_0 sentence_1 What is the purpose of the AI Bill of Rights mentioned in the context?
BLUEPRINT FOR AN
AI B ILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022When was the Blueprint for an AI Bill of Rights published?
BLUEPRINT FOR AN
AI B ILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?
About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
published by the White House Office of Science and Technology Policy in October 2022. This framework was
released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered
world.” Its release follows a year of public engagement to inform this initiative. The framework is available
online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights
About the Office of Science and Technology Policy
The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 27 | 0.8792 |
1.8519 | 50 | 0.8950 |
2.0 | 54 | 0.9011 |
3.0 | 81 | 0.9022 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rchrdgwr/finetuned-arctic-model
Base model
Snowflake/snowflake-arctic-embed-mEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.845
- Cosine Accuracy@3 on Unknownself-reported0.948
- Cosine Accuracy@5 on Unknownself-reported0.977
- Cosine Accuracy@10 on Unknownself-reported0.994
- Cosine Precision@1 on Unknownself-reported0.845
- Cosine Precision@3 on Unknownself-reported0.316
- Cosine Precision@5 on Unknownself-reported0.195
- Cosine Precision@10 on Unknownself-reported0.099
- Cosine Recall@1 on Unknownself-reported0.845
- Cosine Recall@3 on Unknownself-reported0.948