SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model trained on the rbojja/zero-shot-intent-classification dataset that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 18 classes
- Training Dataset: rbojja/zero-shot-intent-classification
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
7 |
|
3 |
|
15 |
|
8 |
|
12 |
|
9 |
|
17 |
|
0 |
|
6 |
|
11 |
|
16 |
|
4 |
|
10 |
|
13 |
|
2 |
|
1 |
|
5 |
|
14 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/intent-classification-small")
# Run inference
preds = model("Uhh, clear.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 4.2224 | 9 |
Label | Training Sample Count |
---|---|
0 | 40 |
1 | 40 |
2 | 37 |
3 | 40 |
4 | 41 |
5 | 38 |
6 | 42 |
7 | 38 |
8 | 35 |
9 | 39 |
10 | 42 |
11 | 41 |
12 | 42 |
13 | 44 |
14 | 38 |
15 | 43 |
16 | 47 |
17 | 37 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.149 | - |
0.0276 | 50 | 0.1836 | - |
0.0552 | 100 | 0.1408 | - |
0.0829 | 150 | 0.0978 | - |
0.1105 | 200 | 0.0805 | - |
0.1381 | 250 | 0.0684 | - |
0.1657 | 300 | 0.0594 | - |
0.1934 | 350 | 0.051 | - |
0.2210 | 400 | 0.0383 | - |
0.2486 | 450 | 0.0379 | - |
0.2762 | 500 | 0.035 | - |
0.3039 | 550 | 0.0334 | - |
0.3315 | 600 | 0.0306 | - |
0.3591 | 650 | 0.0266 | - |
0.3867 | 700 | 0.0264 | - |
0.4144 | 750 | 0.018 | - |
0.4420 | 800 | 0.0193 | - |
0.4696 | 850 | 0.0166 | - |
0.4972 | 900 | 0.0165 | - |
0.5249 | 950 | 0.016 | - |
0.5525 | 1000 | 0.0177 | - |
0.5801 | 1050 | 0.0202 | - |
0.6077 | 1100 | 0.0133 | - |
0.6354 | 1150 | 0.014 | - |
0.6630 | 1200 | 0.013 | - |
0.6906 | 1250 | 0.0161 | - |
0.7182 | 1300 | 0.0119 | - |
0.7459 | 1350 | 0.0132 | - |
0.7735 | 1400 | 0.0131 | - |
0.8011 | 1450 | 0.0123 | - |
0.8287 | 1500 | 0.0115 | - |
0.8564 | 1550 | 0.0111 | - |
0.8840 | 1600 | 0.011 | - |
0.9116 | 1650 | 0.01 | - |
0.9392 | 1700 | 0.0098 | - |
0.9669 | 1750 | 0.0142 | - |
0.9945 | 1800 | 0.0132 | - |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 25
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for rbojja/intent-classification-small
Base model
BAAI/bge-small-en-v1.5