SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model trained on the rbojja/zero-shot-intent-classification dataset that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
7
  • 'Oh my, this is great!'
  • 'Oh, this is fantastic!'
  • 'Hmm, I’m so delighted!'
3
  • "Oh, absolutely, that's it!"
  • "Oh, absolutely, that's it!"
  • "Yep, that's exactly what I meant."
15
  • 'Really, no way?'
  • 'Oh, that’s quite something!'
  • 'Oh, that’s quite something!'
8
  • "Gotcha... oh, that's clear!"
  • 'Hmm, I see... perfect!'
  • 'Oh, I see... clear!'
12
  • 'Uhh, fine.'
  • 'Oh, clear.'
  • 'Uhh, noted.'
9
  • 'Uhh, take care!'
  • 'Hmm, see you!'
  • 'Uhh, see you!'
17
  • '"Umm, this could be a decent plan."'
  • '"I think this might be the solution."'
  • '"Maybe this will work out, I suppose."'
0
  • "Why can't you just work?!"
  • 'Seriously, this is a joke!'
  • 'Ugh, this is so frustrating!'
6
  • '"Oh, what if I'm a dream?"'
  • '"Oh, do you speak dolphin?"'
  • '"Uhh, do you have a wish?"'
11
  • "Uh-huh, that's a valid point."
  • 'Like, I get it.'
  • 'Right, I understand.'
16
  • 'Thank you!'
  • '"Hmmm, thanks, you're great!"'
  • '"Oh, fantastic, thanks a lot!"'
4
  • "Sorry, I'm not sure."
  • "Well, I'm lost."
  • "Hmm, I'm not sure."
10
  • 'Oh, hi!'
  • "Hello! What's new?"
  • "Hi! How's life?"
13
  • 'Oh, gotcha.'
  • 'Hmmm, okay.'
  • 'Alright, thanks.'
2
  • 'What’s the context behind that?'
  • 'Could you simplify that for me?'
  • 'Can you explain that concept?'
1
  • '"Oh, I didn’t mean to."'
  • '"Oops, sorry for the oversight."'
  • '"Oops, I’m really sorry."'
5
  • 'Oh, this is not what I wanted.'
  • 'Oh no, this is not right.'
  • 'Seriously, this is a failure.'
14
  • 'Uhh, superb choice!'
  • 'Uhh, amazing decision!'
  • 'Oh, superb performance!'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/intent-classification-small")
# Run inference
preds = model("Uhh, clear.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 4.2224 9
Label Training Sample Count
0 40
1 40
2 37
3 40
4 41
5 38
6 42
7 38
8 35
9 39
10 42
11 41
12 42
13 44
14 38
15 43
16 47
17 37

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.149 -
0.0276 50 0.1836 -
0.0552 100 0.1408 -
0.0829 150 0.0978 -
0.1105 200 0.0805 -
0.1381 250 0.0684 -
0.1657 300 0.0594 -
0.1934 350 0.051 -
0.2210 400 0.0383 -
0.2486 450 0.0379 -
0.2762 500 0.035 -
0.3039 550 0.0334 -
0.3315 600 0.0306 -
0.3591 650 0.0266 -
0.3867 700 0.0264 -
0.4144 750 0.018 -
0.4420 800 0.0193 -
0.4696 850 0.0166 -
0.4972 900 0.0165 -
0.5249 950 0.016 -
0.5525 1000 0.0177 -
0.5801 1050 0.0202 -
0.6077 1100 0.0133 -
0.6354 1150 0.014 -
0.6630 1200 0.013 -
0.6906 1250 0.0161 -
0.7182 1300 0.0119 -
0.7459 1350 0.0132 -
0.7735 1400 0.0131 -
0.8011 1450 0.0123 -
0.8287 1500 0.0115 -
0.8564 1550 0.0111 -
0.8840 1600 0.011 -
0.9116 1650 0.01 -
0.9392 1700 0.0098 -
0.9669 1750 0.0142 -
0.9945 1800 0.0132 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.1
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
25
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for rbojja/intent-classification-small

Finetuned
(143)
this model

Dataset used to train rbojja/intent-classification-small