train_wsc_1745950298
This model is a fine-tuned version of google/gemma-3-1b-it on the wsc dataset. It achieves the following results on the evaluation set:
- Loss: 0.2398
- Num Input Tokens Seen: 14005200
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.2502 | 1.6024 | 200 | 0.2398 | 70208 |
0.2243 | 3.2008 | 400 | 0.2570 | 140304 |
0.2314 | 4.8032 | 600 | 0.2445 | 210336 |
0.2246 | 6.4016 | 800 | 0.2456 | 280224 |
0.2238 | 8.0 | 1000 | 0.2563 | 350448 |
0.2056 | 9.6024 | 1200 | 0.3039 | 420560 |
0.218 | 11.2008 | 1400 | 0.3033 | 490880 |
0.2243 | 12.8032 | 1600 | 0.2909 | 560560 |
0.228 | 14.4016 | 1800 | 0.2976 | 630816 |
0.2312 | 16.0 | 2000 | 0.3352 | 699936 |
0.256 | 17.6024 | 2200 | 0.3305 | 769520 |
0.1819 | 19.2008 | 2400 | 0.5937 | 839648 |
0.158 | 20.8032 | 2600 | 0.7600 | 910080 |
0.1106 | 22.4016 | 2800 | 1.2361 | 979504 |
0.1991 | 24.0 | 3000 | 1.0813 | 1049392 |
0.1846 | 25.6024 | 3200 | 1.5614 | 1119904 |
0.1735 | 27.2008 | 3400 | 2.3810 | 1189264 |
0.1509 | 28.8032 | 3600 | 2.0245 | 1259520 |
0.0021 | 30.4016 | 3800 | 3.0666 | 1329408 |
0.0929 | 32.0 | 4000 | 3.0413 | 1399696 |
0.0981 | 33.6024 | 4200 | 3.5872 | 1470240 |
0.0002 | 35.2008 | 4400 | 3.5883 | 1539536 |
0.0102 | 36.8032 | 4600 | 3.9757 | 1610032 |
0.3213 | 38.4016 | 4800 | 4.2087 | 1680240 |
0.0963 | 40.0 | 5000 | 4.1447 | 1749472 |
0.0002 | 41.6024 | 5200 | 4.0717 | 1819376 |
0.0 | 43.2008 | 5400 | 4.1688 | 1889616 |
0.0 | 44.8032 | 5600 | 4.2851 | 1959536 |
0.0 | 46.4016 | 5800 | 4.2626 | 2028864 |
0.0002 | 48.0 | 6000 | 3.9931 | 2099424 |
0.0 | 49.6024 | 6200 | 4.0036 | 2169376 |
0.0 | 51.2008 | 6400 | 4.0874 | 2239408 |
0.0 | 52.8032 | 6600 | 4.1775 | 2309472 |
0.0 | 54.4016 | 6800 | 4.4232 | 2380032 |
0.0 | 56.0 | 7000 | 4.3323 | 2449376 |
0.1357 | 57.6024 | 7200 | 2.3013 | 2519776 |
0.0004 | 59.2008 | 7400 | 3.9364 | 2589392 |
0.0 | 60.8032 | 7600 | 4.5112 | 2659792 |
0.0002 | 62.4016 | 7800 | 4.4699 | 2729184 |
0.0 | 64.0 | 8000 | 4.7731 | 2799504 |
0.0 | 65.6024 | 8200 | 4.6935 | 2869520 |
0.0002 | 67.2008 | 8400 | 4.7713 | 2940080 |
0.0 | 68.8032 | 8600 | 4.9666 | 3010256 |
0.0 | 70.4016 | 8800 | 5.0120 | 3080304 |
0.0 | 72.0 | 9000 | 5.0390 | 3150464 |
0.0 | 73.6024 | 9200 | 5.0681 | 3220512 |
0.0 | 75.2008 | 9400 | 5.0208 | 3290320 |
0.0 | 76.8032 | 9600 | 5.0913 | 3360352 |
0.0 | 78.4016 | 9800 | 5.1181 | 3430416 |
0.0 | 80.0 | 10000 | 5.1148 | 3500544 |
0.0 | 81.6024 | 10200 | 5.1373 | 3570432 |
0.0 | 83.2008 | 10400 | 5.1854 | 3640832 |
0.0 | 84.8032 | 10600 | 5.1791 | 3710480 |
0.0 | 86.4016 | 10800 | 5.1904 | 3780368 |
0.0 | 88.0 | 11000 | 5.2121 | 3850720 |
0.0 | 89.6024 | 11200 | 5.2214 | 3920848 |
0.0 | 91.2008 | 11400 | 5.1889 | 3990784 |
0.0 | 92.8032 | 11600 | 5.2617 | 4060432 |
0.0 | 94.4016 | 11800 | 5.2567 | 4130528 |
0.0 | 96.0 | 12000 | 5.3243 | 4200848 |
0.0 | 97.6024 | 12200 | 5.3238 | 4270928 |
0.0 | 99.2008 | 12400 | 5.3268 | 4339920 |
0.0 | 100.8032 | 12600 | 5.3216 | 4410624 |
0.0 | 102.4016 | 12800 | 5.3369 | 4479904 |
0.0 | 104.0 | 13000 | 5.3556 | 4549824 |
0.0 | 105.6024 | 13200 | 5.3621 | 4620128 |
0.0 | 107.2008 | 13400 | 5.4462 | 4690352 |
0.0 | 108.8032 | 13600 | 5.4229 | 4760256 |
0.0 | 110.4016 | 13800 | 5.3623 | 4830144 |
0.0 | 112.0 | 14000 | 5.4414 | 4900080 |
0.0 | 113.6024 | 14200 | 5.4651 | 4969936 |
0.0 | 115.2008 | 14400 | 5.4911 | 5040096 |
0.0 | 116.8032 | 14600 | 5.4978 | 5110288 |
0.0 | 118.4016 | 14800 | 5.5403 | 5180208 |
0.0 | 120.0 | 15000 | 5.5455 | 5250464 |
0.0 | 121.6024 | 15200 | 5.5610 | 5320528 |
0.0 | 123.2008 | 15400 | 5.5894 | 5390624 |
0.0 | 124.8032 | 15600 | 5.6072 | 5460832 |
0.0 | 126.4016 | 15800 | 5.6240 | 5530720 |
0.0 | 128.0 | 16000 | 5.6497 | 5600992 |
0.0 | 129.6024 | 16200 | 5.6333 | 5672032 |
0.0 | 131.2008 | 16400 | 5.6614 | 5740976 |
0.0 | 132.8032 | 16600 | 5.6828 | 5811248 |
0.0 | 134.4016 | 16800 | 5.6995 | 5881152 |
0.0 | 136.0 | 17000 | 5.7738 | 5951136 |
0.0 | 137.6024 | 17200 | 5.7470 | 6021136 |
0.0 | 139.2008 | 17400 | 5.7591 | 6091696 |
0.0 | 140.8032 | 17600 | 5.7855 | 6161472 |
0.0 | 142.4016 | 17800 | 5.8064 | 6231760 |
0.0 | 144.0 | 18000 | 5.8327 | 6301232 |
0.0 | 145.6024 | 18200 | 5.8848 | 6371776 |
0.0 | 147.2008 | 18400 | 5.8775 | 6442048 |
0.0 | 148.8032 | 18600 | 5.9053 | 6511680 |
0.0 | 150.4016 | 18800 | 5.9010 | 6581136 |
0.0 | 152.0 | 19000 | 5.9301 | 6651296 |
0.0 | 153.6024 | 19200 | 5.9435 | 6721584 |
0.0 | 155.2008 | 19400 | 5.9803 | 6791744 |
0.0 | 156.8032 | 19600 | 6.0182 | 6862112 |
0.0 | 158.4016 | 19800 | 6.0037 | 6931856 |
0.0 | 160.0 | 20000 | 6.0110 | 7001952 |
0.0 | 161.6024 | 20200 | 5.9660 | 7071568 |
0.0 | 163.2008 | 20400 | 6.0137 | 7141584 |
0.0 | 164.8032 | 20600 | 6.0390 | 7212096 |
0.0 | 166.4016 | 20800 | 6.0555 | 7282736 |
0.0 | 168.0 | 21000 | 6.0948 | 7352288 |
0.0 | 169.6024 | 21200 | 6.1164 | 7422624 |
0.0 | 171.2008 | 21400 | 6.1387 | 7492496 |
0.0 | 172.8032 | 21600 | 6.1157 | 7562288 |
0.0 | 174.4016 | 21800 | 6.1460 | 7632432 |
0.0 | 176.0 | 22000 | 6.1857 | 7702096 |
0.0 | 177.6024 | 22200 | 6.1444 | 7772000 |
0.0 | 179.2008 | 22400 | 6.1881 | 7842112 |
0.0 | 180.8032 | 22600 | 6.2875 | 7912496 |
0.0 | 182.4016 | 22800 | 6.2525 | 7982768 |
0.0 | 184.0 | 23000 | 6.2246 | 8052448 |
0.0 | 185.6024 | 23200 | 6.2503 | 8122832 |
0.0 | 187.2008 | 23400 | 6.2291 | 8193088 |
0.0 | 188.8032 | 23600 | 6.2625 | 8263104 |
0.0 | 190.4016 | 23800 | 6.2605 | 8333312 |
0.0 | 192.0 | 24000 | 6.2397 | 8402848 |
0.0 | 193.6024 | 24200 | 6.2157 | 8472688 |
0.0 | 195.2008 | 24400 | 6.2733 | 8542528 |
0.0 | 196.8032 | 24600 | 6.3027 | 8612928 |
0.0 | 198.4016 | 24800 | 6.2369 | 8682896 |
0.0 | 200.0 | 25000 | 6.3063 | 8752864 |
0.0 | 201.6024 | 25200 | 6.2636 | 8823744 |
0.0 | 203.2008 | 25400 | 6.2100 | 8893360 |
0.0 | 204.8032 | 25600 | 6.2911 | 8963536 |
0.0 | 206.4016 | 25800 | 6.2168 | 9033264 |
0.0 | 208.0 | 26000 | 6.2600 | 9102880 |
0.0 | 209.6024 | 26200 | 6.2668 | 9173088 |
0.0 | 211.2008 | 26400 | 6.2681 | 9242752 |
0.0 | 212.8032 | 26600 | 6.2854 | 9313008 |
0.0 | 214.4016 | 26800 | 6.2501 | 9382592 |
0.0 | 216.0 | 27000 | 6.2807 | 9452912 |
0.0 | 217.6024 | 27200 | 6.2134 | 9522896 |
0.0 | 219.2008 | 27400 | 6.3790 | 9592864 |
0.0 | 220.8032 | 27600 | 6.3640 | 9663568 |
0.0 | 222.4016 | 27800 | 6.3814 | 9733504 |
0.0 | 224.0 | 28000 | 6.3391 | 9803232 |
0.0 | 225.6024 | 28200 | 6.4282 | 9872976 |
0.0 | 227.2008 | 28400 | 6.4834 | 9943472 |
0.0 | 228.8032 | 28600 | 6.5947 | 10013472 |
0.0 | 230.4016 | 28800 | 6.5284 | 10082944 |
0.0 | 232.0 | 29000 | 6.6673 | 10153120 |
0.0 | 233.6024 | 29200 | 6.6531 | 10223856 |
0.0 | 235.2008 | 29400 | 6.7943 | 10293888 |
0.0 | 236.8032 | 29600 | 6.8080 | 10363824 |
0.0 | 238.4016 | 29800 | 6.8269 | 10433056 |
0.0 | 240.0 | 30000 | 6.7854 | 10503136 |
0.0 | 241.6024 | 30200 | 6.9273 | 10573568 |
0.0 | 243.2008 | 30400 | 6.8975 | 10642912 |
0.0 | 244.8032 | 30600 | 6.9270 | 10713264 |
0.0 | 246.4016 | 30800 | 6.9037 | 10783152 |
0.0 | 248.0 | 31000 | 6.9580 | 10853376 |
0.0 | 249.6024 | 31200 | 6.8934 | 10923696 |
0.0 | 251.2008 | 31400 | 6.9023 | 10994016 |
0.0 | 252.8032 | 31600 | 6.8389 | 11063664 |
0.0 | 254.4016 | 31800 | 6.7591 | 11133840 |
0.0 | 256.0 | 32000 | 6.7549 | 11203504 |
0.0 | 257.6024 | 32200 | 6.8300 | 11273840 |
0.0 | 259.2008 | 32400 | 6.7702 | 11342832 |
0.0 | 260.8032 | 32600 | 6.7095 | 11412832 |
0.0 | 262.4016 | 32800 | 6.7570 | 11482880 |
0.0 | 264.0 | 33000 | 6.7268 | 11552512 |
0.0 | 265.6024 | 33200 | 6.6205 | 11622560 |
0.0 | 267.2008 | 33400 | 6.5914 | 11692336 |
0.0 | 268.8032 | 33600 | 6.6435 | 11763296 |
0.0 | 270.4016 | 33800 | 6.6254 | 11833168 |
0.0 | 272.0 | 34000 | 6.5398 | 11902608 |
0.0 | 273.6024 | 34200 | 6.4623 | 11973440 |
0.0 | 275.2008 | 34400 | 6.5638 | 12042992 |
0.0 | 276.8032 | 34600 | 6.5642 | 12113808 |
0.0 | 278.4016 | 34800 | 6.5720 | 12183456 |
0.0 | 280.0 | 35000 | 6.5277 | 12253312 |
0.0 | 281.6024 | 35200 | 6.5080 | 12323712 |
0.0 | 283.2008 | 35400 | 6.4282 | 12393344 |
0.0 | 284.8032 | 35600 | 6.5433 | 12463296 |
0.0 | 286.4016 | 35800 | 6.5506 | 12533712 |
0.0 | 288.0 | 36000 | 6.4980 | 12603312 |
0.0 | 289.6024 | 36200 | 6.4744 | 12672944 |
0.0 | 291.2008 | 36400 | 6.4789 | 12743584 |
0.0 | 292.8032 | 36600 | 6.5051 | 12814000 |
0.0 | 294.4016 | 36800 | 6.5353 | 12883584 |
0.0 | 296.0 | 37000 | 6.4756 | 12954144 |
0.0 | 297.6024 | 37200 | 6.5368 | 13024112 |
0.0 | 299.2008 | 37400 | 6.5682 | 13094448 |
0.0 | 300.8032 | 37600 | 6.5119 | 13164640 |
0.0 | 302.4016 | 37800 | 6.4694 | 13234048 |
0.0 | 304.0 | 38000 | 6.5104 | 13304512 |
0.0 | 305.6024 | 38200 | 6.5197 | 13374272 |
0.0 | 307.2008 | 38400 | 6.4882 | 13444512 |
0.0 | 308.8032 | 38600 | 6.5518 | 13514848 |
0.0 | 310.4016 | 38800 | 6.4864 | 13584800 |
0.0 | 312.0 | 39000 | 6.5067 | 13654928 |
0.0 | 313.6024 | 39200 | 6.4883 | 13724752 |
0.0 | 315.2008 | 39400 | 6.5242 | 13794224 |
0.0 | 316.8032 | 39600 | 6.5555 | 13865104 |
0.0 | 318.4016 | 39800 | 6.5335 | 13935776 |
0.0 | 320.0 | 40000 | 6.5357 | 14005200 |
Framework versions
- PEFT 0.15.2.dev0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support