train_wic_1745950287
This model is a fine-tuned version of google/gemma-3-1b-it on the wic dataset. It achieves the following results on the evaluation set:
- Loss: 3.5085
- Num Input Tokens Seen: 13031928
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
3.574 | 0.1637 | 200 | 3.7502 | 65024 |
3.2951 | 0.3275 | 400 | 3.6551 | 129984 |
3.8231 | 0.4912 | 600 | 3.6054 | 195024 |
3.0376 | 0.6549 | 800 | 3.6036 | 260624 |
3.8106 | 0.8187 | 1000 | 3.6071 | 325984 |
3.9018 | 0.9824 | 1200 | 3.6313 | 391280 |
3.3753 | 1.1457 | 1400 | 3.6102 | 456248 |
3.3904 | 1.3095 | 1600 | 3.6261 | 521464 |
3.3409 | 1.4732 | 1800 | 3.5766 | 586632 |
3.1271 | 1.6369 | 2000 | 3.6092 | 651384 |
3.4137 | 1.8007 | 2200 | 3.6021 | 716552 |
3.557 | 1.9644 | 2400 | 3.5911 | 781992 |
3.3821 | 2.1277 | 2600 | 3.5622 | 847136 |
3.0418 | 2.2914 | 2800 | 3.5362 | 912064 |
3.2648 | 2.4552 | 3000 | 3.5774 | 977312 |
2.9868 | 2.6189 | 3200 | 3.5574 | 1042608 |
3.8563 | 2.7826 | 3400 | 3.5400 | 1107488 |
3.0897 | 2.9464 | 3600 | 3.5933 | 1172864 |
4.0118 | 3.1097 | 3800 | 3.5637 | 1238392 |
3.8601 | 3.2734 | 4000 | 3.5533 | 1303640 |
2.942 | 3.4372 | 4200 | 3.5551 | 1368504 |
3.9586 | 3.6009 | 4400 | 3.5797 | 1433480 |
3.6904 | 3.7646 | 4600 | 3.5560 | 1499016 |
3.5232 | 3.9284 | 4800 | 3.5318 | 1563880 |
3.5762 | 4.0917 | 5000 | 3.5259 | 1628808 |
3.1249 | 4.2554 | 5200 | 3.5340 | 1693576 |
2.9885 | 4.4192 | 5400 | 3.5437 | 1758536 |
3.265 | 4.5829 | 5600 | 3.5389 | 1823544 |
3.8197 | 4.7466 | 5800 | 3.5350 | 1889272 |
2.9118 | 4.9104 | 6000 | 3.5583 | 1954632 |
4.2121 | 5.0737 | 6200 | 3.5233 | 2019440 |
4.0256 | 5.2374 | 6400 | 3.5461 | 2084816 |
3.1994 | 5.4011 | 6600 | 3.5247 | 2149632 |
3.8408 | 5.5649 | 6800 | 3.5577 | 2214864 |
3.1499 | 5.7286 | 7000 | 3.5142 | 2280368 |
3.8928 | 5.8923 | 7200 | 3.5252 | 2345632 |
3.2538 | 6.0557 | 7400 | 3.5120 | 2410768 |
3.1951 | 6.2194 | 7600 | 3.5508 | 2476096 |
3.7805 | 6.3831 | 7800 | 3.5411 | 2541152 |
3.731 | 6.5469 | 8000 | 3.5363 | 2606016 |
3.4264 | 6.7106 | 8200 | 3.5124 | 2670896 |
3.7905 | 6.8743 | 8400 | 3.5184 | 2736160 |
3.7571 | 7.0377 | 8600 | 3.5337 | 2801120 |
3.5284 | 7.2014 | 8800 | 3.5325 | 2865872 |
3.2259 | 7.3651 | 9000 | 3.5462 | 2931072 |
3.5172 | 7.5289 | 9200 | 3.5450 | 2996288 |
3.8408 | 7.6926 | 9400 | 3.5358 | 3061744 |
3.7686 | 7.8563 | 9600 | 3.5335 | 3126896 |
4.3737 | 8.0196 | 9800 | 3.5273 | 3191832 |
3.0142 | 8.1834 | 10000 | 3.5339 | 3257640 |
3.2021 | 8.3471 | 10200 | 3.5421 | 3322584 |
3.0833 | 8.5108 | 10400 | 3.5248 | 3387672 |
3.1155 | 8.6746 | 10600 | 3.5478 | 3452968 |
3.4809 | 8.8383 | 10800 | 3.5213 | 3518104 |
3.4551 | 9.0016 | 11000 | 3.5289 | 3583216 |
3.7315 | 9.1654 | 11200 | 3.5179 | 3648592 |
3.2648 | 9.3291 | 11400 | 3.5085 | 3713808 |
3.3495 | 9.4928 | 11600 | 3.5319 | 3778848 |
4.1403 | 9.6566 | 11800 | 3.5392 | 3844208 |
3.3022 | 9.8203 | 12000 | 3.5549 | 3909264 |
3.0986 | 9.9840 | 12200 | 3.5357 | 3974224 |
3.4615 | 10.1474 | 12400 | 3.5353 | 4039488 |
2.9809 | 10.3111 | 12600 | 3.5419 | 4104512 |
3.3136 | 10.4748 | 12800 | 3.5455 | 4169856 |
4.3368 | 10.6386 | 13000 | 3.5489 | 4234864 |
3.4102 | 10.8023 | 13200 | 3.5388 | 4300144 |
3.4905 | 10.9660 | 13400 | 3.5782 | 4365440 |
3.4071 | 11.1293 | 13600 | 3.5616 | 4430440 |
3.1702 | 11.2931 | 13800 | 3.5541 | 4495784 |
3.0114 | 11.4568 | 14000 | 3.5549 | 4560792 |
3.7312 | 11.6205 | 14200 | 3.5694 | 4625720 |
3.6726 | 11.7843 | 14400 | 3.5617 | 4690744 |
3.7964 | 11.9480 | 14600 | 3.5560 | 4756152 |
4.1136 | 12.1113 | 14800 | 3.5506 | 4821256 |
3.3772 | 12.2751 | 15000 | 3.5625 | 4886344 |
3.7939 | 12.4388 | 15200 | 3.5634 | 4951960 |
3.2353 | 12.6025 | 15400 | 3.5322 | 5016856 |
3.1561 | 12.7663 | 15600 | 3.5188 | 5082248 |
4.3469 | 12.9300 | 15800 | 3.5596 | 5147240 |
3.4963 | 13.0933 | 16000 | 3.5604 | 5212440 |
4.1762 | 13.2571 | 16200 | 3.5374 | 5277800 |
3.6552 | 13.4208 | 16400 | 3.5589 | 5342760 |
3.7178 | 13.5845 | 16600 | 3.5499 | 5407816 |
3.3828 | 13.7483 | 16800 | 3.5545 | 5473672 |
3.4852 | 13.9120 | 17000 | 3.5650 | 5538456 |
3.8798 | 14.0753 | 17200 | 3.5606 | 5603152 |
3.1482 | 14.2391 | 17400 | 3.5547 | 5668048 |
4.0152 | 14.4028 | 17600 | 3.5595 | 5732816 |
4.028 | 14.5665 | 17800 | 3.5676 | 5798240 |
4.3121 | 14.7302 | 18000 | 3.5581 | 5863936 |
3.5476 | 14.8940 | 18200 | 3.5613 | 5929216 |
3.4462 | 15.0573 | 18400 | 3.5455 | 5994376 |
3.9775 | 15.2210 | 18600 | 3.5663 | 6059464 |
3.3053 | 15.3848 | 18800 | 3.5472 | 6125240 |
3.4585 | 15.5485 | 19000 | 3.5601 | 6190600 |
3.2784 | 15.7122 | 19200 | 3.5268 | 6255240 |
3.101 | 15.8760 | 19400 | 3.5718 | 6320328 |
3.7695 | 16.0393 | 19600 | 3.5722 | 6385240 |
3.1582 | 16.2030 | 19800 | 3.5270 | 6450424 |
4.2664 | 16.3668 | 20000 | 3.5577 | 6515688 |
3.0316 | 16.5305 | 20200 | 3.5432 | 6580712 |
3.0393 | 16.6942 | 20400 | 3.5413 | 6646184 |
3.4592 | 16.8580 | 20600 | 3.5338 | 6711480 |
2.918 | 17.0213 | 20800 | 3.5637 | 6776176 |
3.9127 | 17.1850 | 21000 | 3.5319 | 6841120 |
3.2172 | 17.3488 | 21200 | 3.5316 | 6906528 |
3.9372 | 17.5125 | 21400 | 3.5263 | 6971568 |
3.3571 | 17.6762 | 21600 | 3.5427 | 7036832 |
4.0576 | 17.8400 | 21800 | 3.5578 | 7102176 |
3.7445 | 18.0033 | 22000 | 3.5642 | 7167168 |
3.5854 | 18.1670 | 22200 | 3.5294 | 7232736 |
4.1088 | 18.3307 | 22400 | 3.5527 | 7297984 |
3.279 | 18.4945 | 22600 | 3.5682 | 7362832 |
2.7462 | 18.6582 | 22800 | 3.5595 | 7428672 |
3.8284 | 18.8219 | 23000 | 3.5334 | 7493504 |
3.5873 | 18.9857 | 23200 | 3.5301 | 7558400 |
3.8182 | 19.1490 | 23400 | 3.5588 | 7623392 |
3.7164 | 19.3127 | 23600 | 3.5315 | 7688624 |
4.0308 | 19.4765 | 23800 | 3.5314 | 7753632 |
3.4377 | 19.6402 | 24000 | 3.5320 | 7819136 |
2.9969 | 19.8039 | 24200 | 3.5329 | 7884272 |
3.2624 | 19.9677 | 24400 | 3.5258 | 7949504 |
3.6723 | 20.1310 | 24600 | 3.5279 | 8014544 |
3.8711 | 20.2947 | 24800 | 3.5275 | 8079920 |
3.5965 | 20.4585 | 25000 | 3.5295 | 8145552 |
3.3086 | 20.6222 | 25200 | 3.5285 | 8210688 |
3.6435 | 20.7859 | 25400 | 3.5280 | 8275760 |
3.7272 | 20.9497 | 25600 | 3.5323 | 8340784 |
4.5898 | 21.1130 | 25800 | 3.5293 | 8405688 |
2.9163 | 21.2767 | 26000 | 3.5255 | 8470664 |
3.2458 | 21.4404 | 26200 | 3.5270 | 8535736 |
3.2172 | 21.6042 | 26400 | 3.5262 | 8600728 |
3.9145 | 21.7679 | 26600 | 3.5281 | 8666296 |
3.3908 | 21.9316 | 26800 | 3.5281 | 8731640 |
3.5334 | 22.0950 | 27000 | 3.5305 | 8796704 |
3.8381 | 22.2587 | 27200 | 3.5314 | 8861792 |
3.7604 | 22.4224 | 27400 | 3.5314 | 8927168 |
3.368 | 22.5862 | 27600 | 3.5317 | 8992240 |
2.8802 | 22.7499 | 27800 | 3.5317 | 9057600 |
3.6336 | 22.9136 | 28000 | 3.5310 | 9122992 |
3.1203 | 23.0770 | 28200 | 3.5304 | 9187992 |
3.2907 | 23.2407 | 28400 | 3.5304 | 9253112 |
3.8521 | 23.4044 | 28600 | 3.5307 | 9318440 |
3.1546 | 23.5682 | 28800 | 3.5246 | 9383656 |
3.1028 | 23.7319 | 29000 | 3.5246 | 9448616 |
3.5328 | 23.8956 | 29200 | 3.5246 | 9513976 |
2.9873 | 24.0589 | 29400 | 3.5257 | 9579416 |
3.7107 | 24.2227 | 29600 | 3.5257 | 9644664 |
3.4592 | 24.3864 | 29800 | 3.5257 | 9710056 |
3.494 | 24.5501 | 30000 | 3.5246 | 9775272 |
2.5752 | 24.7139 | 30200 | 3.5246 | 9840600 |
3.1539 | 24.8776 | 30400 | 3.5244 | 9905368 |
3.1573 | 25.0409 | 30600 | 3.5246 | 9970160 |
3.3874 | 25.2047 | 30800 | 3.5246 | 10035200 |
3.3958 | 25.3684 | 31000 | 3.5246 | 10100368 |
3.9979 | 25.5321 | 31200 | 3.5246 | 10165552 |
3.5085 | 25.6959 | 31400 | 3.5246 | 10230992 |
4.074 | 25.8596 | 31600 | 3.5246 | 10295840 |
3.5245 | 26.0229 | 31800 | 3.5246 | 10360952 |
3.5162 | 26.1867 | 32000 | 3.5246 | 10425832 |
3.4838 | 26.3504 | 32200 | 3.5246 | 10490904 |
4.0574 | 26.5141 | 32400 | 3.5246 | 10556056 |
3.6515 | 26.6779 | 32600 | 3.5246 | 10621432 |
3.4461 | 26.8416 | 32800 | 3.5246 | 10686808 |
3.4493 | 27.0049 | 33000 | 3.5246 | 10751912 |
4.016 | 27.1686 | 33200 | 3.5246 | 10817272 |
3.758 | 27.3324 | 33400 | 3.5246 | 10882568 |
3.3578 | 27.4961 | 33600 | 3.5246 | 10947368 |
4.1326 | 27.6598 | 33800 | 3.5246 | 11012568 |
3.415 | 27.8236 | 34000 | 3.5246 | 11078056 |
3.3055 | 27.9873 | 34200 | 3.5246 | 11143272 |
3.8248 | 28.1506 | 34400 | 3.5246 | 11208128 |
3.1712 | 28.3144 | 34600 | 3.5246 | 11273344 |
3.398 | 28.4781 | 34800 | 3.5246 | 11338704 |
3.5494 | 28.6418 | 35000 | 3.5246 | 11404240 |
3.4769 | 28.8056 | 35200 | 3.5246 | 11469056 |
3.182 | 28.9693 | 35400 | 3.5246 | 11534288 |
3.174 | 29.1326 | 35600 | 3.5246 | 11599248 |
3.5172 | 29.2964 | 35800 | 3.5246 | 11664528 |
3.3028 | 29.4601 | 36000 | 3.5246 | 11729904 |
3.6835 | 29.6238 | 36200 | 3.5246 | 11794928 |
3.5263 | 29.7876 | 36400 | 3.5246 | 11860400 |
3.4762 | 29.9513 | 36600 | 3.5246 | 11925328 |
3.2393 | 30.1146 | 36800 | 3.5246 | 11989944 |
2.7341 | 30.2783 | 37000 | 3.5246 | 12054968 |
3.8151 | 30.4421 | 37200 | 3.5246 | 12120184 |
3.5903 | 30.6058 | 37400 | 3.5246 | 12185832 |
3.9725 | 30.7695 | 37600 | 3.5246 | 12250664 |
3.362 | 30.9333 | 37800 | 3.5246 | 12315704 |
3.8829 | 31.0966 | 38000 | 3.5246 | 12380824 |
3.8009 | 31.2603 | 38200 | 3.5246 | 12446424 |
4.0143 | 31.4241 | 38400 | 3.5246 | 12511800 |
3.6845 | 31.5878 | 38600 | 3.5246 | 12576920 |
2.9847 | 31.7515 | 38800 | 3.5246 | 12641896 |
3.4192 | 31.9153 | 39000 | 3.5246 | 12706504 |
4.0683 | 32.0786 | 39200 | 3.5246 | 12771208 |
3.2408 | 32.2423 | 39400 | 3.5246 | 12836760 |
3.2512 | 32.4061 | 39600 | 3.5246 | 12901944 |
3.2646 | 32.5698 | 39800 | 3.5246 | 12967000 |
3.9378 | 32.7335 | 40000 | 3.5246 | 13031928 |
Framework versions
- PEFT 0.15.2.dev0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support