train_stsb_1745333587
This model is a fine-tuned version of google/gemma-3-1b-it on the stsb dataset. It achieves the following results on the evaluation set:
- Loss: 0.3016
- Num Input Tokens Seen: 61089232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.6338 | 0.6182 | 200 | 0.7335 | 305312 |
0.4361 | 1.2349 | 400 | 0.5119 | 610048 |
0.4069 | 1.8532 | 600 | 0.4508 | 917664 |
0.3162 | 2.4699 | 800 | 0.4030 | 1223104 |
0.3616 | 3.0866 | 1000 | 0.4255 | 1528432 |
0.536 | 3.7048 | 1200 | 0.4218 | 1837520 |
0.3726 | 4.3215 | 1400 | 0.3733 | 2143216 |
0.3062 | 4.9397 | 1600 | 0.3706 | 2448176 |
0.2859 | 5.5564 | 1800 | 0.3829 | 2752768 |
0.3256 | 6.1731 | 2000 | 0.3627 | 3059504 |
0.3641 | 6.7913 | 2200 | 0.4599 | 3364688 |
0.4271 | 7.4080 | 2400 | 0.4038 | 3672432 |
0.2832 | 8.0247 | 2600 | 0.3646 | 3978272 |
0.3205 | 8.6430 | 2800 | 0.3523 | 4285856 |
0.329 | 9.2597 | 3000 | 0.3370 | 4588608 |
0.2854 | 9.8779 | 3200 | 0.3341 | 4894432 |
0.3865 | 10.4946 | 3400 | 0.3601 | 5200528 |
0.2422 | 11.1113 | 3600 | 0.3311 | 5504960 |
0.2637 | 11.7295 | 3800 | 0.3185 | 5808800 |
0.2363 | 12.3462 | 4000 | 0.3221 | 6114608 |
0.3095 | 12.9645 | 4200 | 0.3179 | 6419376 |
0.2563 | 13.5811 | 4400 | 0.3217 | 6725664 |
0.2999 | 14.1978 | 4600 | 0.3307 | 7030208 |
0.3607 | 14.8161 | 4800 | 0.3180 | 7335712 |
0.221 | 15.4328 | 5000 | 0.3062 | 7641232 |
0.2389 | 16.0495 | 5200 | 0.3139 | 7945360 |
0.2197 | 16.6677 | 5400 | 0.3232 | 8252048 |
0.2517 | 17.2844 | 5600 | 0.3066 | 8557024 |
0.2513 | 17.9026 | 5800 | 0.3103 | 8862080 |
0.2479 | 18.5193 | 6000 | 0.3411 | 9167248 |
0.2169 | 19.1360 | 6200 | 0.3285 | 9472816 |
0.2815 | 19.7543 | 6400 | 0.3114 | 9779344 |
0.2464 | 20.3709 | 6600 | 0.3254 | 10085888 |
0.2408 | 20.9892 | 6800 | 0.3308 | 10391904 |
0.2412 | 21.6059 | 7000 | 0.3197 | 10697664 |
0.2595 | 22.2226 | 7200 | 0.3335 | 11000832 |
0.2116 | 22.8408 | 7400 | 0.3016 | 11308384 |
0.2089 | 23.4575 | 7600 | 0.3092 | 11614048 |
0.2442 | 24.0742 | 7800 | 0.3080 | 11917328 |
0.2222 | 24.6924 | 8000 | 0.3133 | 12224848 |
0.2086 | 25.3091 | 8200 | 0.3171 | 12530128 |
0.2304 | 25.9274 | 8400 | 0.3075 | 12838032 |
0.2304 | 26.5440 | 8600 | 0.3286 | 13142096 |
0.2231 | 27.1607 | 8800 | 0.3456 | 13447712 |
0.2363 | 27.7790 | 9000 | 0.3058 | 13751968 |
0.1782 | 28.3957 | 9200 | 0.3350 | 14060176 |
0.2115 | 29.0124 | 9400 | 0.3257 | 14362928 |
0.2082 | 29.6306 | 9600 | 0.3248 | 14669168 |
0.2693 | 30.2473 | 9800 | 0.3120 | 14973568 |
0.2111 | 30.8655 | 10000 | 0.3342 | 15279840 |
0.2595 | 31.4822 | 10200 | 0.3324 | 15586352 |
0.2011 | 32.0989 | 10400 | 0.3340 | 15891232 |
0.2554 | 32.7172 | 10600 | 0.3228 | 16197472 |
0.1682 | 33.3338 | 10800 | 0.3253 | 16500992 |
0.1949 | 33.9521 | 11000 | 0.3222 | 16807808 |
0.1776 | 34.5688 | 11200 | 0.3391 | 17112928 |
0.1758 | 35.1855 | 11400 | 0.3517 | 17420016 |
0.2342 | 35.8037 | 11600 | 0.3492 | 17726608 |
0.1868 | 36.4204 | 11800 | 0.3338 | 18030288 |
0.1965 | 37.0371 | 12000 | 0.3418 | 18337584 |
0.2001 | 37.6553 | 12200 | 0.3389 | 18640720 |
0.1705 | 38.2720 | 12400 | 0.3572 | 18946400 |
0.2201 | 38.8903 | 12600 | 0.3563 | 19254240 |
0.1896 | 39.5070 | 12800 | 0.3264 | 19558592 |
0.154 | 40.1236 | 13000 | 0.3620 | 19861168 |
0.1773 | 40.7419 | 13200 | 0.3859 | 20169712 |
0.1576 | 41.3586 | 13400 | 0.3768 | 20475008 |
0.1768 | 41.9768 | 13600 | 0.3605 | 20782016 |
0.1917 | 42.5935 | 13800 | 0.3671 | 21085440 |
0.1811 | 43.2102 | 14000 | 0.3727 | 21391616 |
0.1895 | 43.8284 | 14200 | 0.3919 | 21696768 |
0.169 | 44.4451 | 14400 | 0.4041 | 22001488 |
0.1516 | 45.0618 | 14600 | 0.3888 | 22307216 |
0.1491 | 45.6801 | 14800 | 0.4216 | 22612016 |
0.1673 | 46.2968 | 15000 | 0.4129 | 22917744 |
0.1478 | 46.9150 | 15200 | 0.4313 | 23224720 |
0.1482 | 47.5317 | 15400 | 0.4394 | 23531040 |
0.1393 | 48.1484 | 15600 | 0.4659 | 23836048 |
0.1844 | 48.7666 | 15800 | 0.4073 | 24140240 |
0.1588 | 49.3833 | 16000 | 0.4706 | 24445104 |
0.1329 | 50.0 | 16200 | 0.4183 | 24750256 |
0.1453 | 50.6182 | 16400 | 0.4446 | 25055056 |
0.1461 | 51.2349 | 16600 | 0.4712 | 25360976 |
0.1556 | 51.8532 | 16800 | 0.4585 | 25669136 |
0.1392 | 52.4699 | 17000 | 0.4510 | 25972400 |
0.1256 | 53.0866 | 17200 | 0.5056 | 26280272 |
0.1481 | 53.7048 | 17400 | 0.4870 | 26583184 |
0.1249 | 54.3215 | 17600 | 0.4830 | 26891152 |
0.1095 | 54.9397 | 17800 | 0.4971 | 27197008 |
0.1197 | 55.5564 | 18000 | 0.5030 | 27500160 |
0.1382 | 56.1731 | 18200 | 0.5288 | 27805616 |
0.1393 | 56.7913 | 18400 | 0.5456 | 28112336 |
0.1149 | 57.4080 | 18600 | 0.5278 | 28419888 |
0.1033 | 58.0247 | 18800 | 0.5350 | 28724096 |
0.1095 | 58.6430 | 19000 | 0.5425 | 29031328 |
0.1111 | 59.2597 | 19200 | 0.5870 | 29336560 |
0.1431 | 59.8779 | 19400 | 0.5120 | 29642224 |
0.1157 | 60.4946 | 19600 | 0.5720 | 29947456 |
0.1251 | 61.1113 | 19800 | 0.5996 | 30252288 |
0.1074 | 61.7295 | 20000 | 0.5862 | 30557408 |
0.1074 | 62.3462 | 20200 | 0.5969 | 30862656 |
0.1173 | 62.9645 | 20400 | 0.5943 | 31169472 |
0.0826 | 63.5811 | 20600 | 0.6368 | 31474928 |
0.097 | 64.1978 | 20800 | 0.6193 | 31778496 |
0.1155 | 64.8161 | 21000 | 0.6350 | 32086304 |
0.0968 | 65.4328 | 21200 | 0.6808 | 32389328 |
0.0915 | 66.0495 | 21400 | 0.6950 | 32696656 |
0.0858 | 66.6677 | 21600 | 0.6440 | 33001008 |
0.073 | 67.2844 | 21800 | 0.6853 | 33306288 |
0.0952 | 67.9026 | 22000 | 0.6575 | 33612592 |
0.1051 | 68.5193 | 22200 | 0.6931 | 33914992 |
0.0765 | 69.1360 | 22400 | 0.7210 | 34219808 |
0.0672 | 69.7543 | 22600 | 0.7424 | 34525536 |
0.0867 | 70.3709 | 22800 | 0.7057 | 34829856 |
0.0617 | 70.9892 | 23000 | 0.7523 | 35134560 |
0.0674 | 71.6059 | 23200 | 0.7587 | 35439168 |
0.095 | 72.2226 | 23400 | 0.7627 | 35744608 |
0.0599 | 72.8408 | 23600 | 0.7685 | 36050688 |
0.0686 | 73.4575 | 23800 | 0.7728 | 36353808 |
0.0658 | 74.0742 | 24000 | 0.8231 | 36660560 |
0.0772 | 74.6924 | 24200 | 0.8133 | 36968464 |
0.0546 | 75.3091 | 24400 | 0.8044 | 37273264 |
0.0618 | 75.9274 | 24600 | 0.7944 | 37578896 |
0.0479 | 76.5440 | 24800 | 0.8679 | 37882832 |
0.0439 | 77.1607 | 25000 | 0.8588 | 38187312 |
0.0516 | 77.7790 | 25200 | 0.8604 | 38492720 |
0.0392 | 78.3957 | 25400 | 0.9089 | 38796864 |
0.0465 | 79.0124 | 25600 | 0.9304 | 39103824 |
0.0358 | 79.6306 | 25800 | 0.9374 | 39410448 |
0.0374 | 80.2473 | 26000 | 0.9326 | 39715280 |
0.0326 | 80.8655 | 26200 | 0.9603 | 40021520 |
0.0508 | 81.4822 | 26400 | 0.9404 | 40325376 |
0.0431 | 82.0989 | 26600 | 0.9616 | 40631296 |
0.0345 | 82.7172 | 26800 | 0.9698 | 40937312 |
0.0342 | 83.3338 | 27000 | 1.0021 | 41240464 |
0.0292 | 83.9521 | 27200 | 0.9857 | 41550128 |
0.0239 | 84.5688 | 27400 | 1.0404 | 41855152 |
0.0195 | 85.1855 | 27600 | 1.0455 | 42158912 |
0.0268 | 85.8037 | 27800 | 1.0351 | 42461856 |
0.027 | 86.4204 | 28000 | 1.0425 | 42769760 |
0.0157 | 87.0371 | 28200 | 1.0615 | 43074800 |
0.0328 | 87.6553 | 28400 | 1.0537 | 43378640 |
0.015 | 88.2720 | 28600 | 1.0599 | 43683840 |
0.0171 | 88.8903 | 28800 | 1.1204 | 43988256 |
0.0144 | 89.5070 | 29000 | 1.1128 | 44294256 |
0.0139 | 90.1236 | 29200 | 1.1181 | 44598464 |
0.019 | 90.7419 | 29400 | 1.1521 | 44904928 |
0.0091 | 91.3586 | 29600 | 1.1771 | 45208784 |
0.0167 | 91.9768 | 29800 | 1.1665 | 45516336 |
0.0069 | 92.5935 | 30000 | 1.1925 | 45820432 |
0.0067 | 93.2102 | 30200 | 1.1542 | 46127408 |
0.0105 | 93.8284 | 30400 | 1.1779 | 46431888 |
0.0161 | 94.4451 | 30600 | 1.2037 | 46736368 |
0.01 | 95.0618 | 30800 | 1.2178 | 47043472 |
0.0053 | 95.6801 | 31000 | 1.2279 | 47348976 |
0.0045 | 96.2968 | 31200 | 1.2609 | 47652864 |
0.0054 | 96.9150 | 31400 | 1.2644 | 47959872 |
0.0071 | 97.5317 | 31600 | 1.2636 | 48265392 |
0.0031 | 98.1484 | 31800 | 1.2654 | 48569984 |
0.006 | 98.7666 | 32000 | 1.2886 | 48874016 |
0.0078 | 99.3833 | 32200 | 1.2597 | 49181056 |
0.0028 | 100.0 | 32400 | 1.2977 | 49485120 |
0.0038 | 100.6182 | 32600 | 1.2805 | 49790304 |
0.0031 | 101.2349 | 32800 | 1.2831 | 50097008 |
0.0034 | 101.8532 | 33000 | 1.3035 | 50403088 |
0.0029 | 102.4699 | 33200 | 1.3286 | 50707088 |
0.0022 | 103.0866 | 33400 | 1.3272 | 51010144 |
0.0015 | 103.7048 | 33600 | 1.3404 | 51318976 |
0.0049 | 104.3215 | 33800 | 1.3586 | 51623136 |
0.0018 | 104.9397 | 34000 | 1.3730 | 51930240 |
0.0014 | 105.5564 | 34200 | 1.3785 | 52233888 |
0.0022 | 106.1731 | 34400 | 1.3781 | 52541008 |
0.0038 | 106.7913 | 34600 | 1.3860 | 52845904 |
0.0014 | 107.4080 | 34800 | 1.3796 | 53150720 |
0.0017 | 108.0247 | 35000 | 1.3928 | 53456816 |
0.0018 | 108.6430 | 35200 | 1.3678 | 53760816 |
0.0015 | 109.2597 | 35400 | 1.3936 | 54066160 |
0.0021 | 109.8779 | 35600 | 1.3884 | 54371888 |
0.001 | 110.4946 | 35800 | 1.3918 | 54676672 |
0.0012 | 111.1113 | 36000 | 1.4058 | 54983008 |
0.0007 | 111.7295 | 36200 | 1.4167 | 55289472 |
0.0008 | 112.3462 | 36400 | 1.4215 | 55591632 |
0.001 | 112.9645 | 36600 | 1.4282 | 55898640 |
0.0009 | 113.5811 | 36800 | 1.4258 | 56202288 |
0.0012 | 114.1978 | 37000 | 1.4355 | 56510384 |
0.001 | 114.8161 | 37200 | 1.4351 | 56816880 |
0.0013 | 115.4328 | 37400 | 1.4372 | 57119232 |
0.0012 | 116.0495 | 37600 | 1.4366 | 57424224 |
0.0006 | 116.6677 | 37800 | 1.4440 | 57729856 |
0.0007 | 117.2844 | 38000 | 1.4441 | 58034352 |
0.0005 | 117.9026 | 38200 | 1.4475 | 58342576 |
0.0007 | 118.5193 | 38400 | 1.4481 | 58648384 |
0.0007 | 119.1360 | 38600 | 1.4491 | 58953568 |
0.0009 | 119.7543 | 38800 | 1.4523 | 59257088 |
0.0007 | 120.3709 | 39000 | 1.4505 | 59562208 |
0.0005 | 120.9892 | 39200 | 1.4553 | 59867712 |
0.0011 | 121.6059 | 39400 | 1.4503 | 60173616 |
0.0008 | 122.2226 | 39600 | 1.4521 | 60476592 |
0.0005 | 122.8408 | 39800 | 1.4525 | 60782960 |
0.0006 | 123.4575 | 40000 | 1.4483 | 61089232 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support