train_sst2_1744902626
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3423
- Num Input Tokens Seen: 33458560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.3637 | 0.0528 | 200 | 0.3444 | 166688 |
0.3455 | 0.1056 | 400 | 0.3437 | 334048 |
0.3695 | 0.1584 | 600 | 0.3603 | 500448 |
0.3481 | 0.2112 | 800 | 0.3463 | 667872 |
0.3391 | 0.2640 | 1000 | 0.3454 | 834848 |
0.3507 | 0.3167 | 1200 | 0.3469 | 1002816 |
0.3419 | 0.3695 | 1400 | 0.3456 | 1169088 |
0.3257 | 0.4223 | 1600 | 0.3657 | 1337088 |
0.3429 | 0.4751 | 1800 | 0.3433 | 1505536 |
0.3504 | 0.5279 | 2000 | 0.3490 | 1673024 |
0.3429 | 0.5807 | 2200 | 0.3441 | 1842304 |
0.3464 | 0.6335 | 2400 | 0.3458 | 2007328 |
0.351 | 0.6863 | 2600 | 0.3440 | 2174880 |
0.3433 | 0.7391 | 2800 | 0.3451 | 2341280 |
0.3421 | 0.7919 | 3000 | 0.3450 | 2509440 |
0.3478 | 0.8447 | 3200 | 0.3435 | 2674784 |
0.3415 | 0.8975 | 3400 | 0.3462 | 2843680 |
0.3468 | 0.9502 | 3600 | 0.3461 | 3011904 |
0.3399 | 1.0029 | 3800 | 0.3438 | 3178064 |
0.3459 | 1.0557 | 4000 | 0.3573 | 3345904 |
0.345 | 1.1085 | 4200 | 0.3439 | 3514608 |
0.3406 | 1.1613 | 4400 | 0.3457 | 3680560 |
0.3453 | 1.2141 | 4600 | 0.3503 | 3849328 |
0.3254 | 1.2669 | 4800 | 0.3537 | 4017200 |
0.3425 | 1.3197 | 5000 | 0.3441 | 4187184 |
0.3492 | 1.3724 | 5200 | 0.3441 | 4354416 |
0.3434 | 1.4252 | 5400 | 0.3433 | 4519856 |
0.3464 | 1.4780 | 5600 | 0.3441 | 4687280 |
0.3317 | 1.5308 | 5800 | 0.3459 | 4856112 |
0.3447 | 1.5836 | 6000 | 0.3432 | 5022736 |
0.3406 | 1.6364 | 6200 | 0.3579 | 5188656 |
0.3669 | 1.6892 | 6400 | 0.3445 | 5356208 |
0.3639 | 1.7420 | 6600 | 0.3451 | 5523952 |
0.3498 | 1.7948 | 6800 | 0.3482 | 5690672 |
0.343 | 1.8476 | 7000 | 0.3465 | 5857072 |
0.3323 | 1.9004 | 7200 | 0.3451 | 6024976 |
0.3487 | 1.9531 | 7400 | 0.3530 | 6191664 |
0.3554 | 2.0058 | 7600 | 0.3564 | 6357472 |
0.3597 | 2.0586 | 7800 | 0.3433 | 6525984 |
0.3421 | 2.1114 | 8000 | 0.3443 | 6692320 |
0.3354 | 2.1642 | 8200 | 0.3465 | 6860064 |
0.3402 | 2.2170 | 8400 | 0.3457 | 7026528 |
0.3265 | 2.2698 | 8600 | 0.3502 | 7192384 |
0.3434 | 2.3226 | 8800 | 0.3432 | 7358816 |
0.3501 | 2.3753 | 9000 | 0.3467 | 7526496 |
0.3335 | 2.4281 | 9200 | 0.3440 | 7696064 |
0.3457 | 2.4809 | 9400 | 0.3555 | 7863456 |
0.3506 | 2.5337 | 9600 | 0.3517 | 8031776 |
0.3415 | 2.5865 | 9800 | 0.3464 | 8199584 |
0.347 | 2.6393 | 10000 | 0.3493 | 8366016 |
0.3532 | 2.6921 | 10200 | 0.3436 | 8531808 |
0.3483 | 2.7449 | 10400 | 0.3497 | 8702976 |
0.3338 | 2.7977 | 10600 | 0.3441 | 8870944 |
0.332 | 2.8505 | 10800 | 0.3435 | 9039680 |
0.3506 | 2.9033 | 11000 | 0.3500 | 9206880 |
0.3434 | 2.9561 | 11200 | 0.3450 | 9372128 |
0.3402 | 3.0087 | 11400 | 0.3442 | 9538768 |
0.3277 | 3.0615 | 11600 | 0.3434 | 9705232 |
0.3479 | 3.1143 | 11800 | 0.3466 | 9871632 |
0.314 | 3.1671 | 12000 | 0.3493 | 10039472 |
0.324 | 3.2199 | 12200 | 0.3525 | 10206320 |
0.342 | 3.2727 | 12400 | 0.3447 | 10376240 |
0.356 | 3.3255 | 12600 | 0.3428 | 10544464 |
0.3513 | 3.3782 | 12800 | 0.3431 | 10712240 |
0.347 | 3.4310 | 13000 | 0.3439 | 10879120 |
0.3321 | 3.4838 | 13200 | 0.3434 | 11045072 |
0.3421 | 3.5366 | 13400 | 0.3449 | 11211312 |
0.3401 | 3.5894 | 13600 | 0.3432 | 11378128 |
0.334 | 3.6422 | 13800 | 0.3432 | 11544592 |
0.3435 | 3.6950 | 14000 | 0.3430 | 11713040 |
0.3444 | 3.7478 | 14200 | 0.3442 | 11880432 |
0.346 | 3.8006 | 14400 | 0.3490 | 12048176 |
0.3442 | 3.8534 | 14600 | 0.3438 | 12215792 |
0.3477 | 3.9062 | 14800 | 0.3530 | 12383792 |
0.3437 | 3.9590 | 15000 | 0.3434 | 12549680 |
0.3473 | 4.0116 | 15200 | 0.3430 | 12716448 |
0.3526 | 4.0644 | 15400 | 0.3430 | 12882752 |
0.331 | 4.1172 | 15600 | 0.3441 | 13051200 |
0.3377 | 4.1700 | 15800 | 0.3447 | 13217024 |
0.3238 | 4.2228 | 16000 | 0.3485 | 13382784 |
0.3572 | 4.2756 | 16200 | 0.3460 | 13549216 |
0.3457 | 4.3284 | 16400 | 0.3428 | 13719072 |
0.3496 | 4.3812 | 16600 | 0.3453 | 13884928 |
0.3389 | 4.4339 | 16800 | 0.3475 | 14051584 |
0.3379 | 4.4867 | 17000 | 0.3435 | 14220704 |
0.3461 | 4.5395 | 17200 | 0.3442 | 14387008 |
0.3119 | 4.5923 | 17400 | 0.3498 | 14555808 |
0.3377 | 4.6451 | 17600 | 0.3429 | 14723456 |
0.3457 | 4.6979 | 17800 | 0.3457 | 14890880 |
0.3371 | 4.7507 | 18000 | 0.3449 | 15059744 |
0.3329 | 4.8035 | 18200 | 0.3441 | 15224512 |
0.3479 | 4.8563 | 18400 | 0.3442 | 15392960 |
0.3539 | 4.9091 | 18600 | 0.3427 | 15561696 |
0.3553 | 4.9619 | 18800 | 0.3432 | 15728800 |
0.3432 | 5.0145 | 19000 | 0.3435 | 15897552 |
0.3556 | 5.0673 | 19200 | 0.3511 | 16064688 |
0.3497 | 5.1201 | 19400 | 0.3439 | 16231120 |
0.3335 | 5.1729 | 19600 | 0.3445 | 16397744 |
0.3646 | 5.2257 | 19800 | 0.3435 | 16564176 |
0.325 | 5.2785 | 20000 | 0.3429 | 16731600 |
0.3426 | 5.3313 | 20200 | 0.3434 | 16898064 |
0.3327 | 5.3841 | 20400 | 0.3523 | 17064080 |
0.342 | 5.4368 | 20600 | 0.3433 | 17231888 |
0.332 | 5.4896 | 20800 | 0.3440 | 17399184 |
0.3488 | 5.5424 | 21000 | 0.3437 | 17566160 |
0.3348 | 5.5952 | 21200 | 0.3486 | 17732304 |
0.3329 | 5.6480 | 21400 | 0.3519 | 17900880 |
0.3423 | 5.7008 | 21600 | 0.3440 | 18070192 |
0.3557 | 5.7536 | 21800 | 0.3533 | 18237168 |
0.3464 | 5.8064 | 22000 | 0.3430 | 18403856 |
0.3437 | 5.8592 | 22200 | 0.3446 | 18571248 |
0.3373 | 5.9120 | 22400 | 0.3451 | 18738672 |
0.3372 | 5.9648 | 22600 | 0.3452 | 18905744 |
0.3675 | 6.0174 | 22800 | 0.3441 | 19073440 |
0.3512 | 6.0702 | 23000 | 0.3428 | 19241920 |
0.3418 | 6.1230 | 23200 | 0.3427 | 19409408 |
0.3412 | 6.1758 | 23400 | 0.3446 | 19577024 |
0.3488 | 6.2286 | 23600 | 0.3429 | 19744608 |
0.338 | 6.2814 | 23800 | 0.3474 | 19911488 |
0.3409 | 6.3342 | 24000 | 0.3443 | 20078944 |
0.3375 | 6.3870 | 24200 | 0.3438 | 20244928 |
0.3404 | 6.4398 | 24400 | 0.3426 | 20411232 |
0.3424 | 6.4925 | 24600 | 0.3428 | 20578080 |
0.3417 | 6.5453 | 24800 | 0.3445 | 20746592 |
0.3544 | 6.5981 | 25000 | 0.3440 | 20913344 |
0.3352 | 6.6509 | 25200 | 0.3441 | 21081952 |
0.3495 | 6.7037 | 25400 | 0.3426 | 21248384 |
0.3422 | 6.7565 | 25600 | 0.3430 | 21415872 |
0.344 | 6.8093 | 25800 | 0.3432 | 21584000 |
0.3383 | 6.8621 | 26000 | 0.3427 | 21751168 |
0.3391 | 6.9149 | 26200 | 0.3436 | 21918816 |
0.343 | 6.9677 | 26400 | 0.3428 | 22084384 |
0.3383 | 7.0203 | 26600 | 0.3433 | 22251776 |
0.3386 | 7.0731 | 26800 | 0.3442 | 22418080 |
0.3427 | 7.1259 | 27000 | 0.3434 | 22587392 |
0.3728 | 7.1787 | 27200 | 0.3436 | 22753056 |
0.3759 | 7.2315 | 27400 | 0.3459 | 22920768 |
0.3408 | 7.2843 | 27600 | 0.3437 | 23087296 |
0.3329 | 7.3371 | 27800 | 0.3430 | 23254400 |
0.3349 | 7.3899 | 28000 | 0.3427 | 23422752 |
0.3478 | 7.4427 | 28200 | 0.3424 | 23588352 |
0.3361 | 7.4954 | 28400 | 0.3444 | 23755840 |
0.3314 | 7.5482 | 28600 | 0.3429 | 23923680 |
0.3451 | 7.6010 | 28800 | 0.3428 | 24091168 |
0.3328 | 7.6538 | 29000 | 0.3431 | 24258016 |
0.3383 | 7.7066 | 29200 | 0.3430 | 24427808 |
0.3302 | 7.7594 | 29400 | 0.3443 | 24596288 |
0.3389 | 7.8122 | 29600 | 0.3429 | 24764192 |
0.3221 | 7.8650 | 29800 | 0.3473 | 24932000 |
0.3373 | 7.9178 | 30000 | 0.3434 | 25100224 |
0.3454 | 7.9706 | 30200 | 0.3429 | 25267808 |
0.3342 | 8.0232 | 30400 | 0.3437 | 25433440 |
0.3329 | 8.0760 | 30600 | 0.3432 | 25600672 |
0.3287 | 8.1288 | 30800 | 0.3436 | 25769408 |
0.3559 | 8.1816 | 31000 | 0.3429 | 25936160 |
0.348 | 8.2344 | 31200 | 0.3430 | 26103744 |
0.3229 | 8.2872 | 31400 | 0.3457 | 26270560 |
0.3382 | 8.3400 | 31600 | 0.3426 | 26437536 |
0.3525 | 8.3928 | 31800 | 0.3434 | 26604480 |
0.3446 | 8.4456 | 32000 | 0.3433 | 26771680 |
0.3464 | 8.4984 | 32200 | 0.3428 | 26940256 |
0.3424 | 8.5511 | 32400 | 0.3431 | 27107680 |
0.3333 | 8.6039 | 32600 | 0.3438 | 27274048 |
0.3384 | 8.6567 | 32800 | 0.3427 | 27440544 |
0.3515 | 8.7095 | 33000 | 0.3430 | 27608000 |
0.3536 | 8.7623 | 33200 | 0.3443 | 27776704 |
0.3475 | 8.8151 | 33400 | 0.3427 | 27942752 |
0.353 | 8.8679 | 33600 | 0.3428 | 28108864 |
0.3371 | 8.9207 | 33800 | 0.3425 | 28275296 |
0.3487 | 8.9735 | 34000 | 0.3428 | 28443520 |
0.3397 | 9.0261 | 34200 | 0.3427 | 28609776 |
0.3408 | 9.0789 | 34400 | 0.3423 | 28777712 |
0.3417 | 9.1317 | 34600 | 0.3429 | 28944144 |
0.3468 | 9.1845 | 34800 | 0.3435 | 29111152 |
0.3391 | 9.2373 | 35000 | 0.3429 | 29278000 |
0.345 | 9.2901 | 35200 | 0.3431 | 29443792 |
0.3352 | 9.3429 | 35400 | 0.3430 | 29609072 |
0.3376 | 9.3957 | 35600 | 0.3433 | 29776592 |
0.3505 | 9.4485 | 35800 | 0.3428 | 29941616 |
0.3436 | 9.5013 | 36000 | 0.3432 | 30110160 |
0.3342 | 9.5540 | 36200 | 0.3423 | 30277744 |
0.3458 | 9.6068 | 36400 | 0.3433 | 30447152 |
0.3409 | 9.6596 | 36600 | 0.3429 | 30612976 |
0.3224 | 9.7124 | 36800 | 0.3430 | 30780240 |
0.3574 | 9.7652 | 37000 | 0.3430 | 30948048 |
0.3332 | 9.8180 | 37200 | 0.3429 | 31116368 |
0.3526 | 9.8708 | 37400 | 0.3425 | 31283888 |
0.3402 | 9.9236 | 37600 | 0.3431 | 31452560 |
0.3337 | 9.9764 | 37800 | 0.3428 | 31620720 |
0.3472 | 10.0290 | 38000 | 0.3428 | 31786016 |
0.3257 | 10.0818 | 38200 | 0.3429 | 31952768 |
0.3231 | 10.1346 | 38400 | 0.3432 | 32120320 |
0.3361 | 10.1874 | 38600 | 0.3431 | 32287584 |
0.3327 | 10.2402 | 38800 | 0.3429 | 32455072 |
0.3458 | 10.2930 | 39000 | 0.3429 | 32621184 |
0.3356 | 10.3458 | 39200 | 0.3430 | 32788960 |
0.3475 | 10.3986 | 39400 | 0.3431 | 32955776 |
0.3332 | 10.4514 | 39600 | 0.3431 | 33122816 |
0.3246 | 10.5042 | 39800 | 0.3432 | 33291072 |
0.3482 | 10.5569 | 40000 | 0.3433 | 33458560 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_sst2_1744902626
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3