train_mnli_1744902585
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the mnli dataset. It achieves the following results on the evaluation set:
- Loss: 0.3357
- Num Input Tokens Seen: 62984280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.6626 | 0.0091 | 200 | 0.6524 | 312896 |
0.7724 | 0.0181 | 400 | 0.6093 | 625472 |
0.3785 | 0.0272 | 600 | 0.3805 | 942656 |
0.4347 | 0.0362 | 800 | 0.3784 | 1256992 |
0.4175 | 0.0453 | 1000 | 0.3748 | 1572864 |
0.4516 | 0.0543 | 1200 | 0.3609 | 1889696 |
0.4132 | 0.0634 | 1400 | 0.4343 | 2203360 |
0.3945 | 0.0724 | 1600 | 0.3904 | 2524096 |
0.3702 | 0.0815 | 1800 | 0.4047 | 2837312 |
0.4426 | 0.0905 | 2000 | 0.4006 | 3152992 |
0.4405 | 0.0996 | 2200 | 0.4356 | 3466976 |
0.3683 | 0.1086 | 2400 | 0.3999 | 3784000 |
0.3224 | 0.1177 | 2600 | 0.4874 | 4100288 |
0.3747 | 0.1268 | 2800 | 0.3687 | 4417024 |
0.3558 | 0.1358 | 3000 | 0.3646 | 4730880 |
0.4067 | 0.1449 | 3200 | 0.3642 | 5046976 |
0.3608 | 0.1539 | 3400 | 0.4002 | 5361952 |
0.3815 | 0.1630 | 3600 | 0.3647 | 5680768 |
0.3862 | 0.1720 | 3800 | 0.4574 | 5996256 |
0.3587 | 0.1811 | 4000 | 0.3627 | 6311552 |
0.331 | 0.1901 | 4200 | 0.3791 | 6627776 |
0.335 | 0.1992 | 4400 | 0.3430 | 6946240 |
0.3485 | 0.2082 | 4600 | 0.3873 | 7260672 |
0.3224 | 0.2173 | 4800 | 0.3450 | 7574432 |
0.3566 | 0.2264 | 5000 | 0.3479 | 7890496 |
0.3319 | 0.2354 | 5200 | 0.3551 | 8202528 |
0.354 | 0.2445 | 5400 | 0.3949 | 8516928 |
0.3437 | 0.2535 | 5600 | 0.3447 | 8828000 |
0.3466 | 0.2626 | 5800 | 0.3427 | 9143776 |
0.3727 | 0.2716 | 6000 | 0.3672 | 9456800 |
0.3587 | 0.2807 | 6200 | 0.3495 | 9770496 |
0.3593 | 0.2897 | 6400 | 0.3426 | 10084544 |
0.3299 | 0.2988 | 6600 | 0.3832 | 10400832 |
0.3538 | 0.3078 | 6800 | 0.3558 | 10713664 |
0.3505 | 0.3169 | 7000 | 0.3447 | 11028672 |
0.3126 | 0.3259 | 7200 | 0.3760 | 11347104 |
0.3644 | 0.3350 | 7400 | 0.3538 | 11658304 |
0.3468 | 0.3441 | 7600 | 0.3482 | 11969312 |
0.328 | 0.3531 | 7800 | 0.3524 | 12283264 |
0.3273 | 0.3622 | 8000 | 0.3460 | 12595776 |
0.3537 | 0.3712 | 8200 | 0.3523 | 12911104 |
0.3386 | 0.3803 | 8400 | 0.3545 | 13225632 |
0.3321 | 0.3893 | 8600 | 0.3431 | 13544096 |
0.3541 | 0.3984 | 8800 | 0.3878 | 13857600 |
0.3815 | 0.4074 | 9000 | 0.3890 | 14172800 |
0.3723 | 0.4165 | 9200 | 0.3529 | 14487680 |
0.3816 | 0.4255 | 9400 | 0.3597 | 14807520 |
0.3156 | 0.4346 | 9600 | 0.3811 | 15117696 |
0.3731 | 0.4436 | 9800 | 0.3394 | 15433344 |
0.3529 | 0.4527 | 10000 | 0.3460 | 15748576 |
0.3473 | 0.4618 | 10200 | 0.3793 | 16064864 |
0.3345 | 0.4708 | 10400 | 0.3443 | 16386496 |
0.3708 | 0.4799 | 10600 | 0.3469 | 16700128 |
0.3233 | 0.4889 | 10800 | 0.3567 | 17015072 |
0.3279 | 0.4980 | 11000 | 0.3438 | 17334080 |
0.342 | 0.5070 | 11200 | 0.3467 | 17650336 |
0.3544 | 0.5161 | 11400 | 0.3380 | 17964032 |
0.371 | 0.5251 | 11600 | 0.3514 | 18280704 |
0.3684 | 0.5342 | 11800 | 0.3545 | 18595744 |
0.3302 | 0.5432 | 12000 | 0.3421 | 18906592 |
0.3526 | 0.5523 | 12200 | 0.3444 | 19223392 |
0.3347 | 0.5614 | 12400 | 0.3411 | 19535520 |
0.3183 | 0.5704 | 12600 | 0.3476 | 19848032 |
0.3117 | 0.5795 | 12800 | 0.3772 | 20163616 |
0.3384 | 0.5885 | 13000 | 0.3389 | 20479520 |
0.3399 | 0.5976 | 13200 | 0.3385 | 20792320 |
0.3515 | 0.6066 | 13400 | 0.3461 | 21105472 |
0.3329 | 0.6157 | 13600 | 0.3434 | 21418912 |
0.3379 | 0.6247 | 13800 | 0.3448 | 21740320 |
0.3307 | 0.6338 | 14000 | 0.3430 | 22051936 |
0.3258 | 0.6428 | 14200 | 0.3412 | 22365376 |
0.34 | 0.6519 | 14400 | 0.3407 | 22680000 |
0.3718 | 0.6609 | 14600 | 0.3461 | 22995520 |
0.3377 | 0.6700 | 14800 | 0.3446 | 23311072 |
0.3466 | 0.6791 | 15000 | 0.3420 | 23626112 |
0.3481 | 0.6881 | 15200 | 0.3475 | 23937568 |
0.3298 | 0.6972 | 15400 | 0.3558 | 24253504 |
0.3411 | 0.7062 | 15600 | 0.3427 | 24568160 |
0.3495 | 0.7153 | 15800 | 0.3555 | 24882112 |
0.3408 | 0.7243 | 16000 | 0.3423 | 25201792 |
0.3424 | 0.7334 | 16200 | 0.3400 | 25518176 |
0.3365 | 0.7424 | 16400 | 0.3473 | 25832000 |
0.3271 | 0.7515 | 16600 | 0.3421 | 26142144 |
0.3369 | 0.7605 | 16800 | 0.3384 | 26458432 |
0.3239 | 0.7696 | 17000 | 0.3389 | 26771360 |
0.3311 | 0.7787 | 17200 | 0.3452 | 27085568 |
0.3313 | 0.7877 | 17400 | 0.3452 | 27401344 |
0.3731 | 0.7968 | 17600 | 0.3483 | 27721120 |
0.3405 | 0.8058 | 17800 | 0.3634 | 28035200 |
0.3366 | 0.8149 | 18000 | 0.3502 | 28351968 |
0.3289 | 0.8239 | 18200 | 0.3402 | 28668224 |
0.3341 | 0.8330 | 18400 | 0.3366 | 28981824 |
0.3394 | 0.8420 | 18600 | 0.3393 | 29293792 |
0.3361 | 0.8511 | 18800 | 0.3393 | 29608320 |
0.3442 | 0.8601 | 19000 | 0.3450 | 29922016 |
0.3339 | 0.8692 | 19200 | 0.3402 | 30237280 |
0.3202 | 0.8782 | 19400 | 0.3397 | 30550560 |
0.3519 | 0.8873 | 19600 | 0.3416 | 30861952 |
0.3468 | 0.8964 | 19800 | 0.3371 | 31176736 |
0.3444 | 0.9054 | 20000 | 0.3381 | 31490688 |
0.3351 | 0.9145 | 20200 | 0.3398 | 31805440 |
0.333 | 0.9235 | 20400 | 0.3397 | 32120672 |
0.338 | 0.9326 | 20600 | 0.3461 | 32434592 |
0.3155 | 0.9416 | 20800 | 0.3606 | 32746528 |
0.3369 | 0.9507 | 21000 | 0.3383 | 33062880 |
0.3416 | 0.9597 | 21200 | 0.3434 | 33380032 |
0.3255 | 0.9688 | 21400 | 0.3370 | 33698368 |
0.3502 | 0.9778 | 21600 | 0.3454 | 34015424 |
0.3438 | 0.9869 | 21800 | 0.3385 | 34331520 |
0.3429 | 0.9959 | 22000 | 0.3403 | 34642688 |
0.3284 | 1.0050 | 22200 | 0.3369 | 34959928 |
0.3496 | 1.0140 | 22400 | 0.3385 | 35273880 |
0.3439 | 1.0231 | 22600 | 0.3438 | 35587832 |
0.3232 | 1.0321 | 22800 | 0.3544 | 35899672 |
0.3458 | 1.0412 | 23000 | 0.3367 | 36212824 |
0.3235 | 1.0503 | 23200 | 0.3412 | 36528792 |
0.3366 | 1.0593 | 23400 | 0.3433 | 36844024 |
0.3171 | 1.0684 | 23600 | 0.3484 | 37157784 |
0.3393 | 1.0774 | 23800 | 0.3376 | 37469272 |
0.3228 | 1.0865 | 24000 | 0.3393 | 37785112 |
0.3421 | 1.0955 | 24200 | 0.3407 | 38101496 |
0.3278 | 1.1046 | 24400 | 0.3367 | 38418456 |
0.3339 | 1.1136 | 24600 | 0.3363 | 38735256 |
0.3269 | 1.1227 | 24800 | 0.3373 | 39051640 |
0.3165 | 1.1317 | 25000 | 0.3460 | 39365176 |
0.3314 | 1.1408 | 25200 | 0.3363 | 39684408 |
0.3261 | 1.1498 | 25400 | 0.3382 | 40000056 |
0.3926 | 1.1589 | 25600 | 0.3387 | 40316632 |
0.3271 | 1.1680 | 25800 | 0.3372 | 40629528 |
0.3322 | 1.1770 | 26000 | 0.3377 | 40944536 |
0.3308 | 1.1861 | 26200 | 0.3392 | 41261208 |
0.3364 | 1.1951 | 26400 | 0.3383 | 41575992 |
0.3509 | 1.2042 | 26600 | 0.3374 | 41888504 |
0.3479 | 1.2132 | 26800 | 0.3377 | 42202072 |
0.3414 | 1.2223 | 27000 | 0.3382 | 42518168 |
0.3194 | 1.2313 | 27200 | 0.3417 | 42833560 |
0.3444 | 1.2404 | 27400 | 0.3376 | 43144152 |
0.3317 | 1.2494 | 27600 | 0.3368 | 43457272 |
0.3299 | 1.2585 | 27800 | 0.3372 | 43774104 |
0.3497 | 1.2675 | 28000 | 0.3415 | 44088120 |
0.3222 | 1.2766 | 28200 | 0.3422 | 44401112 |
0.3442 | 1.2857 | 28400 | 0.3384 | 44718232 |
0.3279 | 1.2947 | 28600 | 0.3383 | 45031416 |
0.3401 | 1.3038 | 28800 | 0.3385 | 45340984 |
0.3375 | 1.3128 | 29000 | 0.3359 | 45659256 |
0.3562 | 1.3219 | 29200 | 0.3362 | 45975384 |
0.3654 | 1.3309 | 29400 | 0.3392 | 46290296 |
0.3331 | 1.3400 | 29600 | 0.3375 | 46604312 |
0.3359 | 1.3490 | 29800 | 0.3362 | 46919192 |
0.348 | 1.3581 | 30000 | 0.3371 | 47236440 |
0.349 | 1.3671 | 30200 | 0.3418 | 47550744 |
0.3208 | 1.3762 | 30400 | 0.3362 | 47865912 |
0.3381 | 1.3853 | 30600 | 0.3363 | 48183992 |
0.3078 | 1.3943 | 30800 | 0.3402 | 48495160 |
0.3325 | 1.4034 | 31000 | 0.3371 | 48813176 |
0.3285 | 1.4124 | 31200 | 0.3373 | 49129080 |
0.3363 | 1.4215 | 31400 | 0.3372 | 49444664 |
0.3384 | 1.4305 | 31600 | 0.3361 | 49756312 |
0.3271 | 1.4396 | 31800 | 0.3365 | 50068088 |
0.3304 | 1.4486 | 32000 | 0.3371 | 50382136 |
0.3235 | 1.4577 | 32200 | 0.3377 | 50700344 |
0.3493 | 1.4667 | 32400 | 0.3360 | 51012696 |
0.3167 | 1.4758 | 32600 | 0.3391 | 51328696 |
0.3436 | 1.4848 | 32800 | 0.3364 | 51641752 |
0.3476 | 1.4939 | 33000 | 0.3390 | 51954840 |
0.3266 | 1.5030 | 33200 | 0.3373 | 52269720 |
0.3463 | 1.5120 | 33400 | 0.3399 | 52585784 |
0.3401 | 1.5211 | 33600 | 0.3361 | 52898904 |
0.3208 | 1.5301 | 33800 | 0.3369 | 53217208 |
0.33 | 1.5392 | 34000 | 0.3370 | 53532408 |
0.3347 | 1.5482 | 34200 | 0.3365 | 53849208 |
0.3296 | 1.5573 | 34400 | 0.3369 | 54166040 |
0.3224 | 1.5663 | 34600 | 0.3363 | 54482232 |
0.3293 | 1.5754 | 34800 | 0.3365 | 54797880 |
0.342 | 1.5844 | 35000 | 0.3362 | 55112536 |
0.333 | 1.5935 | 35200 | 0.3361 | 55427928 |
0.32 | 1.6025 | 35400 | 0.3361 | 55741912 |
0.3627 | 1.6116 | 35600 | 0.3363 | 56057048 |
0.3296 | 1.6207 | 35800 | 0.3369 | 56371640 |
0.3282 | 1.6297 | 36000 | 0.3361 | 56683896 |
0.3493 | 1.6388 | 36200 | 0.3359 | 57003192 |
0.3369 | 1.6478 | 36400 | 0.3369 | 57318104 |
0.3346 | 1.6569 | 36600 | 0.3363 | 57632152 |
0.3272 | 1.6659 | 36800 | 0.3365 | 57948856 |
0.3323 | 1.6750 | 37000 | 0.3362 | 58266232 |
0.3297 | 1.6840 | 37200 | 0.3360 | 58583544 |
0.3258 | 1.6931 | 37400 | 0.3361 | 58903288 |
0.3133 | 1.7021 | 37600 | 0.3374 | 59218296 |
0.3205 | 1.7112 | 37800 | 0.3357 | 59533240 |
0.3225 | 1.7203 | 38000 | 0.3364 | 59848664 |
0.3337 | 1.7293 | 38200 | 0.3366 | 60164984 |
0.3303 | 1.7384 | 38400 | 0.3364 | 60478328 |
0.3251 | 1.7474 | 38600 | 0.3364 | 60787576 |
0.334 | 1.7565 | 38800 | 0.3366 | 61097848 |
0.3268 | 1.7655 | 39000 | 0.3365 | 61413432 |
0.3426 | 1.7746 | 39200 | 0.3362 | 61727320 |
0.3281 | 1.7836 | 39400 | 0.3364 | 62041848 |
0.3122 | 1.7927 | 39600 | 0.3363 | 62358168 |
0.3117 | 1.8017 | 39800 | 0.3363 | 62670392 |
0.3362 | 1.8108 | 40000 | 0.3363 | 62984280 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_mnli_1744902585
Base model
meta-llama/Meta-Llama-3-8B-Instruct