metadata
library_name: transformers
license: apache-2.0
base_model: razhan/whisper-base-hawrami
tags:
- generated_from_trainer
datasets:
- razhan/DOLMA-speech
metrics:
- wer
model-index:
- name: whisper-base-hawrami-transcription
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: razhan/DOLMA-speech hawrami
type: razhan/DOLMA-speech
args: hawrami
metrics:
- name: Wer
type: wer
value: 2.3790849673202614
whisper-base-hawrami-transcription
This model is a fine-tuned version of razhan/whisper-base-hawrami on the razhan/DOLMA-speech hawrami dataset. It achieves the following results on the evaluation set:
- Loss: 3.5885
- Wer: 2.3791
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 1 | 3.5885 | 2.3791 |
No log | 2.0 | 2 | 3.5885 | 2.3791 |
No log | 3.0 | 3 | 3.5885 | 2.3791 |
No log | 4.0 | 4 | 3.5885 | 2.3791 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0