|
---
|
|
library_name: transformers
|
|
license: mit
|
|
base_model: FacebookAI/xlm-roberta-large
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- conll2002
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: xlm-roberta-large-finetuned-ner
|
|
results:
|
|
- task:
|
|
name: Token Classification
|
|
type: token-classification
|
|
dataset:
|
|
name: conll2002
|
|
type: conll2002
|
|
config: es
|
|
split: validation
|
|
args: es
|
|
metrics:
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.86443345323741
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.8835018382352942
|
|
- name: F1
|
|
type: f1
|
|
value: 0.8738636363636364
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.9787686065955755
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# xlm-roberta-large-finetuned-ner
|
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the conll2002 dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.0973
|
|
- Precision: 0.8644
|
|
- Recall: 0.8835
|
|
- F1: 0.8739
|
|
- Accuracy: 0.9788
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 3
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| 0.1382 | 1.0 | 521 | 0.0906 | 0.8502 | 0.8830 | 0.8663 | 0.9782 |
|
|
| 0.048 | 2.0 | 1042 | 0.0861 | 0.8472 | 0.8729 | 0.8599 | 0.9780 |
|
|
| 0.0294 | 3.0 | 1563 | 0.0973 | 0.8644 | 0.8835 | 0.8739 | 0.9788 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.46.3
|
|
- Pytorch 2.5.1
|
|
- Datasets 3.1.0
|
|
- Tokenizers 0.20.3
|
|
|