gemma-2-2b-it-009
This model is a fine-tuned version of google/gemma-2-2b-it on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5911
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9136 | 0.2694 | 100 | 1.8578 |
1.6469 | 0.5387 | 200 | 1.7018 |
1.5587 | 0.8081 | 300 | 1.5881 |
1.441 | 1.0754 | 400 | 1.4917 |
1.3434 | 1.3448 | 500 | 1.4168 |
1.3084 | 1.6141 | 600 | 1.3505 |
1.3159 | 1.8835 | 700 | 1.2916 |
1.2283 | 2.1508 | 800 | 1.2368 |
1.1159 | 2.4202 | 900 | 1.1855 |
1.0755 | 2.6896 | 1000 | 1.1303 |
1.0512 | 2.9589 | 1100 | 1.0780 |
1.04 | 3.2263 | 1200 | 1.0311 |
0.9028 | 3.4956 | 1300 | 0.9869 |
0.9561 | 3.7650 | 1400 | 0.9512 |
0.7814 | 4.0323 | 1500 | 0.9062 |
0.9104 | 4.3017 | 1600 | 0.8694 |
0.7495 | 4.5710 | 1700 | 0.8367 |
0.6661 | 4.8404 | 1800 | 0.8088 |
0.672 | 5.1077 | 1900 | 0.7803 |
0.6734 | 5.3771 | 2000 | 0.7566 |
0.6352 | 5.6465 | 2100 | 0.7309 |
0.6284 | 5.9158 | 2200 | 0.7213 |
0.5652 | 6.1832 | 2300 | 0.6951 |
0.5337 | 6.4525 | 2400 | 0.6878 |
0.6394 | 6.7219 | 2500 | 0.6675 |
0.5346 | 6.9912 | 2600 | 0.6543 |
0.4703 | 7.2586 | 2700 | 0.6480 |
0.6006 | 7.5279 | 2800 | 0.6389 |
0.5572 | 7.7973 | 2900 | 0.6265 |
0.5619 | 8.0646 | 3000 | 0.6163 |
0.4893 | 8.3340 | 3100 | 0.6114 |
0.4357 | 8.6034 | 3200 | 0.6060 |
0.4812 | 8.8727 | 3300 | 0.5998 |
0.4626 | 9.1401 | 3400 | 0.5989 |
0.4952 | 9.4094 | 3500 | 0.5938 |
0.3694 | 9.6788 | 3600 | 0.5918 |
0.4987 | 9.9481 | 3700 | 0.5911 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.