bert-finetuned-ner

Este es un moelo afinado sobre el modelo BSC-LT/roberta-base-bne-capitel-ner sobre conll2002 dataset. Se lora un excelente rendimiento porque el modelo original fue preentrenado con textos en español logrando los siguientes resultados:

  • Loss: 0.0950
  • Precision: 0.8599
  • Recall: 0.8773
  • F1: 0.8685
  • Accuracy: 0.9787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1045 1.0 521 0.0932 0.8593 0.8704 0.8648 0.9764
0.0343 2.0 1042 0.0870 0.8616 0.8757 0.8686 0.9781
0.019 3.0 1563 0.0950 0.8599 0.8773 0.8685 0.9787

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.20.0
Downloads last month
10
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for raulgdp/bert-finetuned-ner

Finetuned
(1)
this model

Dataset used to train raulgdp/bert-finetuned-ner

Collection including raulgdp/bert-finetuned-ner

Evaluation results