NER-finetuning-BETO

Este es el modelo de BETO para NER NazaGara/NER-fine-tuned-BETO on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2140
  • Precision: 0.8424
  • Recall: 0.8545
  • F1: 0.8484
  • Accuracy: 0.9691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0482 1.0 1041 0.1522 0.8309 0.8481 0.8394 0.9687
0.0302 2.0 2082 0.1661 0.8293 0.8527 0.8408 0.9696
0.0164 3.0 3123 0.1691 0.8403 0.8536 0.8469 0.9696
0.011 4.0 4164 0.2026 0.8427 0.8516 0.8471 0.9693
0.0073 5.0 5205 0.2140 0.8424 0.8545 0.8484 0.9691

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
114
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for raulgdp/Mistral-clasificacion-multilabel

Finetuned
(14)
this model