Mistral-Small-24B-Instruct-2501-009-3000

This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3848

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.4124 0.2694 100 1.3776
1.209 0.5387 200 1.2167
1.0526 0.8081 300 1.0705
0.7969 1.0754 400 0.9167
0.7644 1.3448 500 0.8216
0.6831 1.6141 600 0.7254
0.7615 1.8835 700 0.6653
0.5999 2.1508 800 0.6172
0.556 2.4202 900 0.5793
0.5678 2.6896 1000 0.5534
0.5127 2.9589 1100 0.5219
0.4916 3.2263 1200 0.5020
0.3705 3.4956 1300 0.4867
0.4849 3.7650 1400 0.4751
0.4055 4.0323 1500 0.4621
0.428 4.3017 1600 0.4547
0.3895 4.5710 1700 0.4434
0.3481 4.8404 1800 0.4269
0.295 5.1077 1900 0.4222
0.3563 5.3771 2000 0.4167
0.3555 5.6465 2100 0.4090
0.371 5.9158 2200 0.4036
0.3317 6.1832 2300 0.4008
0.3107 6.4525 2400 0.3988
0.3817 6.7219 2500 0.3923
0.2904 6.9912 2600 0.3885
0.3191 7.2586 2700 0.3886
0.3573 7.5279 2800 0.3877
0.358 7.7973 2900 0.3848

Framework versions

  • PEFT 0.15.2
  • Transformers 4.53.0.dev0
  • Pytorch 2.7.0+cu126
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
148
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for raulgdp/Mistral-Small-24B-Instruct-2501-009-3000

Collection including raulgdp/Mistral-Small-24B-Instruct-2501-009-3000