Mistral-7B-Instruct-v0.3-JEP
Éste modelo fue afinado con mistralai/Mistral-7B-Instruct-v0.3 sobre el corpus jdavit/colombian-conflict-SQA que tiene información pública de la JEP logrando una función de perdida entre el conjunto de entrenamiento y el de testeo de 0.9339.
Model description
Este es un modelo entrenado sobre el modelo original de mistralai/Mistral-7B-Instruct-v0.3 con el fin de obtner un modelo para un chatbot que responda a preguntas de los casos presentados en la JEP-Colombia. Este es un ejercicio académico realizado por estudiantes de la Univalle.
Intended uses & limitations
More information needed
Training and evaluation data
El datasete jdavit/colombian-conflict-SQA está conformado de 2896 ejemplos de pregunta-respuesta y contexto.
Training procedure
El modelo fue entrenado por 4 horas con: trainable params: 6,815,744 || all params: 7,254,839,296 || trainable%: 0.0939
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1764 | 0.1535 | 100 | 1.1504 |
1.0487 | 0.3070 | 200 | 1.0548 |
0.9853 | 0.4605 | 300 | 1.0175 |
0.9844 | 0.6140 | 400 | 0.9919 |
1.011 | 0.7675 | 500 | 0.9780 |
0.9396 | 0.9210 | 600 | 0.9663 |
0.9259 | 1.0737 | 700 | 0.9569 |
0.9444 | 1.2272 | 800 | 0.9483 |
0.8928 | 1.3807 | 900 | 0.9415 |
0.9195 | 1.5342 | 1000 | 0.9364 |
0.8967 | 1.6876 | 1100 | 0.9338 |
0.927 | 1.8411 | 1200 | 0.9300 |
0.9417 | 1.9946 | 1300 | 0.9263 |
0.9198 | 2.1474 | 1400 | 0.9276 |
0.9108 | 2.3008 | 1500 | 0.9237 |
0.8971 | 2.4543 | 1600 | 0.9223 |
0.8758 | 2.6078 | 1700 | 0.9199 |
0.8681 | 2.7613 | 1800 | 0.9169 |
0.8557 | 2.9148 | 1900 | 0.9153 |
0.82 | 3.0675 | 2000 | 0.9161 |
0.8379 | 3.2210 | 2100 | 0.9170 |
0.8414 | 3.3745 | 2200 | 0.9161 |
0.9164 | 3.5280 | 2300 | 0.9141 |
0.8764 | 3.6815 | 2400 | 0.9101 |
0.8449 | 3.8350 | 2500 | 0.9094 |
0.8708 | 3.9885 | 2600 | 0.9088 |
0.83 | 4.1412 | 2700 | 0.9132 |
0.7793 | 4.2947 | 2800 | 0.9148 |
0.8527 | 4.4482 | 2900 | 0.9120 |
0.7941 | 4.6017 | 3000 | 0.9102 |
0.8103 | 4.7552 | 3100 | 0.9111 |
0.7991 | 4.9087 | 3200 | 0.9083 |
0.7791 | 5.0614 | 3300 | 0.9126 |
0.8297 | 5.2149 | 3400 | 0.9154 |
0.739 | 5.3684 | 3500 | 0.9181 |
0.8456 | 5.5219 | 3600 | 0.9105 |
0.826 | 5.6754 | 3700 | 0.9135 |
0.8336 | 5.8289 | 3800 | 0.9127 |
0.7995 | 5.9823 | 3900 | 0.9134 |
0.7782 | 6.1351 | 4000 | 0.9207 |
0.7822 | 6.2886 | 4100 | 0.9170 |
0.7556 | 6.4421 | 4200 | 0.9182 |
0.7522 | 6.5955 | 4300 | 0.9213 |
0.7669 | 6.7490 | 4400 | 0.9168 |
0.7503 | 6.9025 | 4500 | 0.9173 |
0.7739 | 7.0553 | 4600 | 0.9217 |
0.7699 | 7.2087 | 4700 | 0.9293 |
0.761 | 7.3622 | 4800 | 0.9234 |
0.7257 | 7.5157 | 4900 | 0.9269 |
0.7394 | 7.6692 | 5000 | 0.9233 |
0.7354 | 7.8227 | 5100 | 0.9218 |
0.8162 | 7.9762 | 5200 | 0.9209 |
0.7276 | 8.1289 | 5300 | 0.9294 |
0.7477 | 8.2824 | 5400 | 0.9299 |
0.7278 | 8.4359 | 5500 | 0.9282 |
0.6571 | 8.5894 | 5600 | 0.9297 |
0.7494 | 8.7429 | 5700 | 0.9286 |
0.767 | 8.8964 | 5800 | 0.9267 |
0.6792 | 9.0491 | 5900 | 0.9338 |
0.7053 | 9.2026 | 6000 | 0.9350 |
0.706 | 9.3561 | 6100 | 0.9351 |
0.7232 | 9.5096 | 6200 | 0.9334 |
0.7301 | 9.6631 | 6300 | 0.9332 |
0.7424 | 9.8166 | 6400 | 0.9344 |
0.6775 | 9.9701 | 6500 | 0.9339 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Model tree for raulgdp/Mistral-7B-Instruct-v0.3-JEP
Base model
mistralai/Mistral-7B-v0.3