Mistral-7B-Instruct-v0.3-JEP

Éste modelo fue afinado con mistralai/Mistral-7B-Instruct-v0.3 sobre el corpus jdavit/colombian-conflict-SQA que tiene información pública de la JEP logrando una función de perdida entre el conjunto de entrenamiento y el de testeo de 0.9339.

Model description

Este es un modelo entrenado sobre el modelo original de mistralai/Mistral-7B-Instruct-v0.3 con el fin de obtner un modelo para un chatbot que responda a preguntas de los casos presentados en la JEP-Colombia. Este es un ejercicio académico realizado por estudiantes de la Univalle.

Intended uses & limitations

More information needed

Training and evaluation data

El datasete jdavit/colombian-conflict-SQA está conformado de 2896 ejemplos de pregunta-respuesta y contexto.

Training procedure

El modelo fue entrenado por 4 horas con: trainable params: 6,815,744 || all params: 7,254,839,296 || trainable%: 0.0939

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.1764 0.1535 100 1.1504
1.0487 0.3070 200 1.0548
0.9853 0.4605 300 1.0175
0.9844 0.6140 400 0.9919
1.011 0.7675 500 0.9780
0.9396 0.9210 600 0.9663
0.9259 1.0737 700 0.9569
0.9444 1.2272 800 0.9483
0.8928 1.3807 900 0.9415
0.9195 1.5342 1000 0.9364
0.8967 1.6876 1100 0.9338
0.927 1.8411 1200 0.9300
0.9417 1.9946 1300 0.9263
0.9198 2.1474 1400 0.9276
0.9108 2.3008 1500 0.9237
0.8971 2.4543 1600 0.9223
0.8758 2.6078 1700 0.9199
0.8681 2.7613 1800 0.9169
0.8557 2.9148 1900 0.9153
0.82 3.0675 2000 0.9161
0.8379 3.2210 2100 0.9170
0.8414 3.3745 2200 0.9161
0.9164 3.5280 2300 0.9141
0.8764 3.6815 2400 0.9101
0.8449 3.8350 2500 0.9094
0.8708 3.9885 2600 0.9088
0.83 4.1412 2700 0.9132
0.7793 4.2947 2800 0.9148
0.8527 4.4482 2900 0.9120
0.7941 4.6017 3000 0.9102
0.8103 4.7552 3100 0.9111
0.7991 4.9087 3200 0.9083
0.7791 5.0614 3300 0.9126
0.8297 5.2149 3400 0.9154
0.739 5.3684 3500 0.9181
0.8456 5.5219 3600 0.9105
0.826 5.6754 3700 0.9135
0.8336 5.8289 3800 0.9127
0.7995 5.9823 3900 0.9134
0.7782 6.1351 4000 0.9207
0.7822 6.2886 4100 0.9170
0.7556 6.4421 4200 0.9182
0.7522 6.5955 4300 0.9213
0.7669 6.7490 4400 0.9168
0.7503 6.9025 4500 0.9173
0.7739 7.0553 4600 0.9217
0.7699 7.2087 4700 0.9293
0.761 7.3622 4800 0.9234
0.7257 7.5157 4900 0.9269
0.7394 7.6692 5000 0.9233
0.7354 7.8227 5100 0.9218
0.8162 7.9762 5200 0.9209
0.7276 8.1289 5300 0.9294
0.7477 8.2824 5400 0.9299
0.7278 8.4359 5500 0.9282
0.6571 8.5894 5600 0.9297
0.7494 8.7429 5700 0.9286
0.767 8.8964 5800 0.9267
0.6792 9.0491 5900 0.9338
0.7053 9.2026 6000 0.9350
0.706 9.3561 6100 0.9351
0.7232 9.5096 6200 0.9334
0.7301 9.6631 6300 0.9332
0.7424 9.8166 6400 0.9344
0.6775 9.9701 6500 0.9339

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for raulgdp/Mistral-7B-Instruct-v0.3-JEP

Adapter
(306)
this model

Dataset used to train raulgdp/Mistral-7B-Instruct-v0.3-JEP