Llama-3.2-3B-Instruct-JEP
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1199
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4921 | 0.1535 | 100 | 1.4430 |
1.2984 | 0.3070 | 200 | 1.3138 |
1.2315 | 0.4605 | 300 | 1.2702 |
1.2217 | 0.6140 | 400 | 1.2429 |
1.263 | 0.7675 | 500 | 1.2280 |
1.1829 | 0.9210 | 600 | 1.2155 |
1.1802 | 1.0737 | 700 | 1.2063 |
1.2061 | 1.2272 | 800 | 1.1995 |
1.1387 | 1.3807 | 900 | 1.1922 |
1.1639 | 1.5342 | 1000 | 1.1858 |
1.1446 | 1.6876 | 1100 | 1.1828 |
1.1536 | 1.8411 | 1200 | 1.1768 |
1.1929 | 1.9946 | 1300 | 1.1715 |
1.1902 | 2.1474 | 1400 | 1.1703 |
1.165 | 2.3008 | 1500 | 1.1661 |
1.146 | 2.4543 | 1600 | 1.1634 |
1.1346 | 2.6078 | 1700 | 1.1604 |
1.1227 | 2.7613 | 1800 | 1.1571 |
1.1103 | 2.9148 | 1900 | 1.1537 |
1.0672 | 3.0675 | 2000 | 1.1522 |
1.1103 | 3.2210 | 2100 | 1.1514 |
1.1034 | 3.3745 | 2200 | 1.1489 |
1.1958 | 3.5280 | 2300 | 1.1459 |
1.1257 | 3.6815 | 2400 | 1.1447 |
1.0882 | 3.8350 | 2500 | 1.1435 |
1.1452 | 3.9885 | 2600 | 1.1427 |
1.1185 | 4.1412 | 2700 | 1.1423 |
1.0371 | 4.2947 | 2800 | 1.1410 |
1.1447 | 4.4482 | 2900 | 1.1386 |
1.0647 | 4.6017 | 3000 | 1.1368 |
1.0847 | 4.7552 | 3100 | 1.1355 |
1.0754 | 4.9087 | 3200 | 1.1337 |
1.0596 | 5.0614 | 3300 | 1.1335 |
1.127 | 5.2149 | 3400 | 1.1337 |
1.0244 | 5.3684 | 3500 | 1.1325 |
1.1621 | 5.5219 | 3600 | 1.1310 |
1.102 | 5.6754 | 3700 | 1.1305 |
1.1348 | 5.8289 | 3800 | 1.1289 |
1.0641 | 5.9823 | 3900 | 1.1280 |
1.0889 | 6.1351 | 4000 | 1.1276 |
1.0684 | 6.2886 | 4100 | 1.1274 |
1.0523 | 6.4421 | 4200 | 1.1264 |
1.0437 | 6.5955 | 4300 | 1.1265 |
1.0645 | 6.7490 | 4400 | 1.1256 |
1.0412 | 6.9025 | 4500 | 1.1248 |
1.0904 | 7.0553 | 4600 | 1.1248 |
1.0982 | 7.2087 | 4700 | 1.1249 |
1.0802 | 7.3622 | 4800 | 1.1246 |
1.0236 | 7.5157 | 4900 | 1.1236 |
1.0447 | 7.6692 | 5000 | 1.1224 |
1.0408 | 7.8227 | 5100 | 1.1219 |
1.1236 | 7.9762 | 5200 | 1.1215 |
1.0381 | 8.1289 | 5300 | 1.1216 |
1.0971 | 8.2824 | 5400 | 1.1212 |
1.0529 | 8.4359 | 5500 | 1.1211 |
0.966 | 8.5894 | 5600 | 1.1214 |
1.0575 | 8.7429 | 5700 | 1.1205 |
1.0836 | 8.8964 | 5800 | 1.1201 |
0.997 | 9.0491 | 5900 | 1.1207 |
1.0106 | 9.2026 | 6000 | 1.1204 |
1.0164 | 9.3561 | 6100 | 1.1203 |
1.0576 | 9.5096 | 6200 | 1.1203 |
1.0619 | 9.6631 | 6300 | 1.1199 |
1.0607 | 9.8166 | 6400 | 1.1201 |
0.9816 | 9.9701 | 6500 | 1.1199 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for raulgdp/Llama-3.2-3B-Instruct-JEP
Base model
meta-llama/Llama-3.2-3B-Instruct