Llama-2-7B-Nous-Hermes-llama-JEP

This model is a fine-tuned version of NousResearch/Nous-Hermes-llama-2-7b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.1748 0.3070 100 1.1434
1.0167 0.6140 200 1.0441
1.0156 0.9210 300 1.0090
0.9971 1.2302 400 0.9899
0.9715 1.5372 500 0.9764
0.9632 1.8442 600 0.9671
0.9202 2.1535 700 0.9610
0.9735 2.4605 800 0.9539
0.9417 2.7675 900 0.9491
0.906 3.0767 1000 0.9440
0.9461 3.3837 1100 0.9427
0.9217 3.6907 1200 0.9376
0.9406 3.9977 1300 0.9360
0.893 4.3070 1400 0.9337
0.9049 4.6140 1500 0.9311
0.9024 4.9210 1600 0.9288
0.9278 5.2302 1700 0.9276
0.95 5.5372 1800 0.9255
0.9091 5.8442 1900 0.9245
0.8973 6.1535 2000 0.9232
0.8571 6.4605 2100 0.9224
0.8963 6.7675 2200 0.9220
0.867 7.0767 2300 0.9206
0.8623 7.3837 2400 0.9203
0.889 7.6907 2500 0.9184
0.8976 7.9977 2600 0.9181
0.8674 8.3070 2700 0.9183
0.8154 8.6140 2800 0.9189
0.9185 8.9210 2900 0.9169
0.8544 9.2302 3000 0.9173
0.8776 9.5372 3100 0.9170
0.8565 9.8442 3200 0.9169

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for raulgdp/Llama-2-7B-Nous-Hermes-llama-JEP

Adapter
(277)
this model