|
--- |
|
library_name: transformers |
|
datasets: |
|
- oscar |
|
- mc4 |
|
- rasyosef/amharic-sentences-corpus |
|
language: |
|
- am |
|
metrics: |
|
- perplexity |
|
pipeline_tag: fill-mask |
|
widget: |
|
- text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል። |
|
example_title: Example 1 |
|
- text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር [MASK] ግዢ በእጅጉ ጨምሯል። |
|
example_title: Example 2 |
|
- text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ [MASK] ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው። |
|
example_title: Example 3 |
|
- text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል [MASK] እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው። |
|
example_title: Example 4 |
|
--- |
|
|
|
# bert-tiny-amharic |
|
|
|
This model has the same architecture as [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar), [mc4](https://huggingface.co/datasets/mc4), and [amharic-sentences-corpus](https://huggingface.co/datasets/rasyosef/amharic-sentences-corpus) datasets, on a total of **290 million tokens**. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 28k. |
|
|
|
It achieves the following results on the evaluation set: |
|
- `Loss: 4.27` |
|
- `Perplexity: 71.52` |
|
|
|
This model has just `4.18M` parameters. |
|
|
|
# How to use |
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='rasyosef/bert-tiny-amharic') |
|
>>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።") |
|
|
|
[{'score': 0.5629344582557678, |
|
'token': 9617, |
|
'token_str': 'ዓመታት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል ።'}, |
|
{'score': 0.3049253523349762, |
|
'token': 9345, |
|
'token_str': 'ዓመት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል ።'}, |
|
{'score': 0.0681595504283905, |
|
'token': 10898, |
|
'token_str': 'አመታት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል ።'}, |
|
{'score': 0.028840897604823112, |
|
'token': 9913, |
|
'token_str': 'አመት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል ።'}, |
|
{'score': 0.008974998258054256, |
|
'token': 15098, |
|
'token_str': 'ዘመናት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዘመናት ተቆጥሯል ።'}] |
|
``` |
|
|
|
# Finetuning |
|
|
|
This model was finetuned and evaluated on the following Amharic NLP tasks |
|
|
|
- **Sentiment Classification** |
|
- Dataset: [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment) |
|
- Code: https://github.com/rasyosef/amharic-sentiment-classification |
|
- **Named Entity Recognition** |
|
- Dataset: [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition) |
|
- Code: https://github.com/rasyosef/amharic-named-entity-recognition |
|
|
|
### Finetuned Model Performance |
|
The reported F1 scores are macro averages. |
|
|
|
|Model|Size (# params)| Perplexity|Sentiment (F1)| Named Entity Recognition (F1)| |
|
|-----|---------------|-----------|--------------|------------------------------| |
|
|bert-medium-amharic|40.5M|13.74|0.83|0.68| |
|
|bert-small-amharic|27.8M|15.96|0.83|0.68| |
|
|bert-mini-amharic|10.7M|22.42|0.81|0.64| |
|
|**bert-tiny-amharic**|**4.18M**|**71.52**|**0.79**|**0.54**| |
|
|xlm-roberta-base|279M||0.83|0.73| |
|
|am-roberta|443M||0.82|0.69| |