3d-icon-Flux-LoRA / README.md
rangwani-harsh's picture
End of training
13e2676 verified
---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
license: other
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
instance_prompt: 3d icon in the style of <s0><s1>
widget:
- text: a <s0><s1> icon of an astronaut riding a horse, in the style of <s0><s1>
output:
url: image_0.png
- text: a <s0><s1> icon of an astronaut riding a horse, in the style of <s0><s1>
output:
url: image_1.png
- text: a <s0><s1> icon of an astronaut riding a horse, in the style of <s0><s1>
output:
url: image_2.png
- text: a <s0><s1> icon of an astronaut riding a horse, in the style of <s0><s1>
output:
url: image_3.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux DreamBooth LoRA - rangwani-harsh/3d-icon-Flux-LoRA
<Gallery />
## Model description
These are rangwani-harsh/3d-icon-Flux-LoRA DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? False.
Pivotal tuning was enabled: True.
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Download model
[Download the *.safetensors LoRA](rangwani-harsh/3d-icon-Flux-LoRA/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
embedding_path = hf_hub_download(repo_id='rangwani-harsh/3d-icon-Flux-LoRA', filename='3d-icon-Flux-LoRA_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
image = pipeline('a <s0><s1> icon of an astronaut riding a horse, in the style of <s0><s1>').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]