raidhon's picture
Update README.md
df66f02 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation
  - large-language-model
  - orpo
base_model:
  - mistralai/Mistral-7B-Instruct-v0.2
model-index:
  - name: Coven 7B 128K ORPO
    description: >-
      Coven 7B 128K ORPO is a derivative of Mistral-7B-Instruct-v0.2, fine-tuned
      to perform specialized tasks involving deeper understanding and reasoning
      over context. This model exhibits strong capabilities in both general
      language understanding and task-specific challenges.
    results:
      - task:
          type: text-generation
          name: Winogrande Challenge
        dataset:
          name: Winogrande
          type: winogrande_xl
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 77.82
            name: accuracy
      - task:
          type: text-generation
          name: TruthfulQA Generation
        dataset:
          name: TruthfulQA
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: accuracy
            value: 49.55
            name: accuracy
      - task:
          type: text-generation
          name: PIQA Problem Solving
        dataset:
          name: PIQA
          type: piqa
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 82.05
            name: accuracy
      - task:
          type: text-generation
          name: OpenBookQA Facts
        dataset:
          name: OpenBookQA
          type: openbookqa
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 34.6
            name: accuracy
      - task:
          type: text-generation
          name: MMLU Knowledge Test
        dataset:
          name: MMLU
          type: mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 63
            name: accuracy
      - task:
          type: text-generation
          name: Hellaswag Contextual Completions
        dataset:
          name: Hellaswag
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: accuracy
            value: 65.37
            name: accuracy
      - task:
          type: text-generation
          name: GSM8k Mathematical Reasoning
        dataset:
          name: GSM8k
          type: gsm8k
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 72.18
            name: exact match (strict)
          - type: accuracy
            value: 72.63
            name: exact match (flexible)
      - task:
          type: text-generation
          name: BoolQ Question Answering
        dataset:
          name: BoolQ
          type: boolq
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 87.43
            name: accuracy
      - task:
          type: text-generation
          name: ARC Challenge
        dataset:
          name: ARC Challenge
          type: ai2_arc
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: accuracy
            value: 59.64
            name: accuracy

πŸ§™ Coven 7B 128K ORPO

Coven 7B 128K is an improved iteration of Mistral-7B-Instruct-v0.2, refined to expand processing capabilities and refine language model preferences. This model includes a significantly increased context constraint of 128K tokens using the Yarn technique, which allows for more extensive data processing and understanding of complex language scenarios. In addition, the Coven 7B ORPO 128K tokenization uses the innovative ORPO (Monolithic Preference Optimization without Reference Model) technology. ORPO simplifies the fine-tuning process by directly optimizing the odds ratio to distinguish between favorable and unfavorable generation styles, effectively improving model performance without the need for an additional preference alignment step.

Eval

Task Model Metric Value Change (%)
Winogrande Mistral-7B-Instruct-v0.2 Accuracy 73.64% -
Coven 7B 128K ORPO Accuracy 77.82% +5.67%
TruthfulQA Mistral-7B-Instruct-v0.2 Accuracy 59.54% -
Coven 7B 128K ORPO Accuracy 49.55% -16.78%
PIQA Mistral-7B-Instruct-v0.2 Accuracy 80.03% -
Coven 7B 128K ORPO Accuracy 82.05% +2.52%
OpenBookQA Mistral-7B-Instruct-v0.2 Accuracy 36.00% -
Coven 7B 128K ORPO Accuracy 34.60% -3.89%
Mistral-7B-Instruct-v0.2 Accuracy Normalized 45.20% -
Coven 7B 128K ORPO Accuracy Normalized 48.00% +6.19%
MMLU Mistral-7B-Instruct-v0.2 Accuracy 58.79% -
Coven 7B 128K ORPO Accuracy 63.00% +7.16%
Hellaswag Mistral-7B-Instruct-v0.2 Accuracy 66.08% -
Coven 7B 128K ORPO Accuracy 65.37% -1.08%
Mistral-7B-Instruct-v0.2 Accuracy Normalized 83.68% -
Coven 7B 128K ORPO Accuracy Normalized 84.29% +0.73%
GSM8K (Strict) Mistral-7B-Instruct-v0.2 Exact Match 41.55% -
Coven 7B 128K ORPO Exact Match 72.18% +73.65%
GSM8K (Flexible) Mistral-7B-Instruct-v0.2 Exact Match 41.93% -
Coven 7B 128K ORPO Exact Match 72.63% +73.29%
BoolQ Mistral-7B-Instruct-v0.2 Accuracy 85.29% -
Coven 7B 128K ORPO Accuracy 87.43% +2.51%
ARC Easy Mistral-7B-Instruct-v0.2 Accuracy 81.36% -
Coven 7B 128K ORPO Accuracy 85.02% +4.50%
Mistral-7B-Instruct-v0.2 Accuracy Normalized 76.60% -
Coven 7B 128K ORPO Accuracy Normalized 82.95% +8.29%
ARC Challenge Mistral-7B-Instruct-v0.2 Accuracy 54.35% -
Coven 7B 128K ORPO Accuracy 59.64% +9.74%
Mistral-7B-Instruct-v0.2 Accuracy Normalized 55.80% -
Coven 7B 128K ORPO Accuracy Normalized 61.69% +10.52%

Model Details

  • Model name: Coven 7B 128K ORPO alpha
  • Fine-tuned by: raidhon
  • Base model: mistralai/Mistral-7B-Instruct-v0.2
  • Parameters: 7B
  • Context: 128K
  • Language(s): Multilingual
  • License: Apache2.0

πŸ’» Usage

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="raidhon/coven_7b_128k_orpo_alpha", torch_dtype=torch.float16, device_map="auto")

messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=4096, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])