rahulmarcellino's picture
Upload folder using huggingface_hub
1d813d0 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1200
  - loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: Sekelompok orang di perahu berlomba menuju pantai.
    sentences:
      - >-
        Haruskah kedatangan pada titik ini menjadi fokus untuk pemeriksaan
        sistem apa pun?
      - Sekelompok orang berdiri bersama dan berpose di depan sebuah rumah.
      - >-
        Seperti yang tercakup dalam jawaban lain, satu-satunya pilihan Anda
        adalah menemui dokter hewan untuk melakukan operasi.
  - source_sentence: Industri Musik Memberi Penghormatan kepada Whitney Houston
    sentences:
      - Setiap bahasa diresapi oleh nilai-nilai budaya yang dibenamkannya.
      - Sebuah pesawat merah dan putih terbang di hari yang cerah.
      - Industri musik berduka atas Whitney Houston
  - source_sentence: Pria itu menggunakan pedang untuk mengiris botol plastik.
    sentences:
      - Seorang pria sedang melakukan push up.
      - Seorang pria mengiris botol plastik dengan pedang.
      - >-
        Untuk melatih diri Anda menggunakan pintasan keyboard, cabut mouse Anda
        selama beberapa hari.
  - source_sentence: seorang anak laki-laki memanjat dinding batu
    sentences:
      - Anak memerah susu sapi di luar.
      - >-
        Selalu sulit ketika orang tua menolak untuk melihat apa yang tampak
        jelas bagi seorang guru.
      - Lima bulldog sedang berlomba di jalur pasir.
  - source_sentence: Pekerjaan pembongkaran dimulai di Stadion Don Valley
    sentences:
      - Kedua wanita itu sedang bermain game.
      - >-
        Tingkat pemogokan bowling didefinisikan untuk pemain bowling sebagai
        jumlah rata-rata bola yang dilempar per gawang yang diambil.
      - Pekerjaan pembongkaran dimulai di stadion
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts eval
          type: sts-eval
        metrics:
          - type: pearson_cosine
            value: -0.04061959608314808
            name: Pearson Cosine
          - type: spearman_cosine
            value: -0.07013283702354331
            name: Spearman Cosine

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Pekerjaan pembongkaran dimulai di Stadion Don Valley',
    'Pekerjaan pembongkaran dimulai di stadion',
    'Kedua wanita itu sedang bermain game.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine -0.0406
spearman_cosine -0.0701

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,200 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 16.78 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 16.67 tokens
    • max: 49 tokens
    • min: 0.0
    • mean: 115.43
    • max: 398.6
  • Samples:
    sentence_0 sentence_1 label
    Pendekatan terbaik adalah bermain dengan kucing Anda setiap malam sebelum tidur. Trik yang saya lakukan adalah memegang dan memeluk kucing saya erat-erat jika mereka mengganggu saya di malam hari. 234.8
    Anjing berwarna gelap berdiri di lapangan berumput. Seekor anjing abu-abu berdiri di lapangan berumput. 133.6
    Bebek putih berdiri di tanah. Seorang wanita bertopi hitam berdiri di dekat kereta bawah tanah. 96.6
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step sts-eval_spearman_cosine
1.0 75 -0.1137
1.3333 100 -0.1012
2.0 150 -0.0837
2.6667 200 -0.0694
3.0 225 -0.0748
4.0 300 -0.0701

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 2.14.4
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}