Edit model card

ms-deberta-v2-xlarge-mnli-finetuned-pt

This model is a fine-tuned version of tasksource/deberta-small-long-nli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2954
  • Accuracy: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Ratio: 0.11

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
1.4129 0.0237 10 0.5425 0.89 0.445 0.5 0.4709 0.0
0.5102 0.0474 20 0.4968 0.89 0.445 0.5 0.4709 0.0
0.4597 0.0711 30 0.4763 0.88 0.6225 0.5395 0.5471 0.0327
0.4975 0.0948 40 0.4605 0.87 0.6658 0.6614 0.6636 0.1067
0.4639 0.1185 50 0.4434 0.8947 0.7355 0.5850 0.6125 0.0367
0.4687 0.1422 60 0.4557 0.892 0.7177 0.6498 0.6747 0.0727
0.4489 0.1659 70 0.4353 0.9293 0.8174 0.8275 0.8224 0.114
0.4318 0.1896 80 0.4269 0.924 0.8010 0.8325 0.8156 0.1233
0.4723 0.2133 90 0.4202 0.9173 0.7832 0.8580 0.8140 0.1447
0.4052 0.2370 100 0.4016 0.9307 0.8207 0.8309 0.8257 0.114
0.4284 0.2607 110 0.4115 0.9187 0.7855 0.8906 0.8255 0.1593
0.3635 0.2844 120 0.3963 0.94 0.8308 0.9052 0.8625 0.1393
0.3894 0.3081 130 0.3910 0.944 0.8409 0.9075 0.8699 0.1353
0.3537 0.3318 140 0.3598 0.9693 0.8983 0.9642 0.9277 0.1313
0.3776 0.3555 150 0.3868 0.944 0.8313 0.9685 0.8823 0.166
0.3626 0.3791 160 0.3235 0.9887 0.9699 0.9724 0.9711 0.1107
0.3683 0.4028 170 0.3272 0.99 0.9583 0.9944 0.9754 0.12
0.3358 0.4265 180 0.3321 0.9873 0.9484 0.9929 0.9692 0.1227
0.3435 0.4502 190 0.3370 0.982 0.9297 0.9899 0.9571 0.128
0.3613 0.4739 200 0.3136 0.9893 0.9728 0.9728 0.9728 0.11
0.3323 0.4976 210 0.3193 0.9887 0.9533 0.9936 0.9723 0.1213
0.3181 0.5213 220 0.3078 0.9947 0.9970 0.9758 0.9861 0.1047
0.3043 0.5450 230 0.3047 0.9947 0.9970 0.9758 0.9861 0.1047
0.3139 0.5687 240 0.3101 0.996 0.9825 0.9978 0.9899 0.114
0.3247 0.5924 250 0.3048 0.9947 0.9970 0.9758 0.9861 0.1047
0.3217 0.6161 260 0.3126 0.9913 0.9635 0.9951 0.9786 0.1187
0.3071 0.6398 270 0.3021 1.0 1.0 1.0 1.0 0.11
0.3048 0.6635 280 0.3048 0.9973 0.9882 0.9985 0.9933 0.1127
0.3054 0.6872 290 0.2996 1.0 1.0 1.0 1.0 0.11
0.3182 0.7109 300 0.2979 1.0 1.0 1.0 1.0 0.11
0.3059 0.7346 310 0.3103 0.9927 0.9688 0.9959 0.9818 0.1173
0.3044 0.7583 320 0.2991 1.0 1.0 1.0 1.0 0.11
0.3002 0.7820 330 0.2967 1.0 1.0 1.0 1.0 0.11
0.2957 0.8057 340 0.2967 1.0 1.0 1.0 1.0 0.11
0.2971 0.8294 350 0.2968 1.0 1.0 1.0 1.0 0.11
0.2964 0.8531 360 0.2970 1.0 1.0 1.0 1.0 0.11
0.297 0.8768 370 0.2969 1.0 1.0 1.0 1.0 0.11
0.3039 0.9005 380 0.2968 1.0 1.0 1.0 1.0 0.11
0.3002 0.9242 390 0.2960 1.0 1.0 1.0 1.0 0.11
0.2968 0.9479 400 0.2956 1.0 1.0 1.0 1.0 0.11
0.2956 0.9716 410 0.2955 1.0 1.0 1.0 1.0 0.11
0.2959 0.9953 420 0.2954 1.0 1.0 1.0 1.0 0.11

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rafaelsandroni/ms-deberta-v2-xlarge-mnli-finetuned-pt

Finetuned
(2)
this model