Whisper-Small-V2: Optimized for Mobile Deployment
Transformer-based automatic speech recognition (ASR) model for multilingual transcription and translation available on HuggingFace
HuggingFace Whisper-Small ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. This model is based on the transformer architecture and has been optimized for edge inference by replacing Multi-Head Attention (MHA) with Single-Head Attention (SHA) and linear layers with convolutional (conv) layers. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a max decoded length specified below.
This model is an implementation of Whisper-Small-V2 found here.
This repository provides scripts to run Whisper-Small-V2 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.speech_recognition
- Model Stats:
- Model checkpoint: openai/whisper-small
- Input resolution: 80x3000 (30 seconds audio)
- Max decoded sequence length: 200 tokens
- Number of parameters (HfWhisperEncoder): 102M
- Model size (HfWhisperEncoder): 391 MB
- Number of parameters (HfWhisperDecoder): 139M
- Model size (HfWhisperDecoder): 533 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
HfWhisperEncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3341.744 ms | 109 - 159 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 427.624 ms | 0 - 10 MB | NPU | Use Export Script |
HfWhisperEncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1005.626 ms | 83 - 280 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 312.338 ms | 0 - 356 MB | NPU | Use Export Script |
HfWhisperEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 757.256 ms | 14 - 220 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 136.071 ms | 4 - 6 MB | NPU | Use Export Script |
HfWhisperEncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1417.847 ms | 100 - 149 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 157.0 ms | 1 - 10 MB | NPU | Use Export Script |
HfWhisperEncoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3341.744 ms | 109 - 159 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 427.624 ms | 0 - 10 MB | NPU | Use Export Script |
HfWhisperEncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 771.963 ms | 18 - 158 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 138.118 ms | 1 - 9 MB | NPU | Use Export Script |
HfWhisperEncoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 727.676 ms | 109 - 158 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 234.176 ms | 1 - 17 MB | NPU | Use Export Script |
HfWhisperEncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 753.393 ms | 40 - 156 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 137.6 ms | 1 - 3 MB | NPU | Use Export Script |
HfWhisperEncoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1417.847 ms | 100 - 149 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 157.0 ms | 1 - 10 MB | NPU | Use Export Script |
HfWhisperEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 746.335 ms | 6 - 270 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 137.066 ms | 0 - 27 MB | NPU | Use Export Script |
HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 557.898 ms | 110 - 300 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 108.082 ms | 0 - 467 MB | NPU | Use Export Script |
HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 287.423 ms | 227 - 2534 MB | NPU | Whisper-Small-V2.onnx |
HfWhisperEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 621.432 ms | 110 - 155 MB | GPU | Whisper-Small-V2.tflite |
HfWhisperEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 82.303 ms | 0 - 440 MB | NPU | Use Export Script |
HfWhisperEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 208.333 ms | 230 - 2106 MB | NPU | Whisper-Small-V2.onnx |
HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 132.231 ms | 0 - 0 MB | NPU | Use Export Script |
HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 369.456 ms | 264 - 264 MB | NPU | Whisper-Small-V2.onnx |
HfWhisperDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 31.514 ms | 14 - 565 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 17.731 ms | 48 - 59 MB | NPU | Use Export Script |
HfWhisperDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 22.866 ms | 14 - 716 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 17.944 ms | 54 - 127 MB | NPU | Use Export Script |
HfWhisperDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 21.28 ms | 10 - 37 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 11.601 ms | 54 - 57 MB | NPU | Use Export Script |
HfWhisperDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 23.127 ms | 14 - 565 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 13.132 ms | 55 - 64 MB | NPU | Use Export Script |
HfWhisperDecoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 31.514 ms | 14 - 565 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 17.731 ms | 48 - 59 MB | NPU | Use Export Script |
HfWhisperDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 21.07 ms | 14 - 41 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 12.089 ms | 60 - 63 MB | NPU | Use Export Script |
HfWhisperDecoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 22.268 ms | 10 - 501 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 14.142 ms | 55 - 70 MB | NPU | Use Export Script |
HfWhisperDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 21.474 ms | 14 - 43 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 12.008 ms | 60 - 63 MB | NPU | Use Export Script |
HfWhisperDecoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 23.127 ms | 14 - 565 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 13.132 ms | 55 - 64 MB | NPU | Use Export Script |
HfWhisperDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 21.154 ms | 14 - 42 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 11.897 ms | 52 - 75 MB | NPU | Use Export Script |
HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 16.844 ms | 3 - 766 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 9.519 ms | 60 - 181 MB | NPU | Use Export Script |
HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 20.449 ms | 0 - 774 MB | NPU | Whisper-Small-V2.onnx |
HfWhisperDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 14.432 ms | 6 - 546 MB | NPU | Whisper-Small-V2.tflite |
HfWhisperDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 8.214 ms | 59 - 153 MB | NPU | Use Export Script |
HfWhisperDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 16.787 ms | 147 - 401 MB | NPU | Whisper-Small-V2.onnx |
HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 10.057 ms | 60 - 60 MB | NPU | Use Export Script |
HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 19.893 ms | 227 - 227 MB | NPU | Whisper-Small-V2.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[whisper-small-v2]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.whisper_small_v2.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.whisper_small_v2.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_small_v2.export
Profiling Results
------------------------------------------------------------
HfWhisperEncoder
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 3341.7
Estimated peak memory usage (MB): [109, 159]
Total # Ops : 1806
Compute Unit(s) : npu (0 ops) gpu (1798 ops) cpu (8 ops)
------------------------------------------------------------
HfWhisperDecoder
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 31.5
Estimated peak memory usage (MB): [14, 565]
Total # Ops : 3136
Compute Unit(s) : npu (3136 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.whisper_small_v2 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Whisper-Small-V2's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Whisper-Small-V2 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 161