Skeleton-Temporal-Action-Localization
Code for the paper "Frame-Level Label Refinement for Skeleton-Based Weakly-Supervised Action Recognition" (AAAI 2023).
Overview
Architecture of Network
Requirements
conda create -n stal python=3.7
conda activate stal
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 -c pytorch
pip install -r requirements.txt
Data Preparation
Due to the distribution policy of AMASS dataset, we are not allowed to distribute the data directly. We provide a series of script that could reproduce our motion segmentation dataset from BABEL dataset.
Download AMASS Dataset and BABEL Dataset. Unzip and locate them in the dataset folder.
Prepare the SMPLH Model following this and put the merged model SMPLH_male.pkl into the human_model folder.
The whole directory should be look like this:
Skeleton-Temporal-Action-Localization
โ README.md
โ train.py
| ...
|
โโโโconfig
โโโโprepare
โโโโ...
โ
โโโโhuman_model
โ โโโโSMPLH_male.pkl
โ
โโโโdataset
โโโโamass
| โโโโACCAD
| โโโโBMLmovi
| โโโโ...
โ
โโโโbabel_v1.0_release
โโโโtrain.json
โโโโval.json
โโโโ...
And also clone the BABEL offical code into the dataset folder.
git clone https://github.com/abhinanda-punnakkal/BABEL.git dataset/BABEL
Finally, the motion segmentation dataset can be generate by:
bash prepare/generate_dataset.sh
Training and Evaluation
Train and evaluate the model with subset-1 of BABEL, run following commands:
python train.py --config config/train_split1.yaml
Acknowledgement
Our codes are based on BABEL, 2s-AGCN and FAC-Net.
Citation
@InProceedings{yu2023frame,
title={Frame-Level Label Refinement for Skeleton-Based Weakly-Supervised Action Recognition},
author={Yu, Qing and Fujiwara, Kent},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={3},
pages={3322--3330},
year={2023}
}
License
Additionally, this repository contains third-party software. Refer NOTICE.txt for more details and follow the terms and conditions of their use.
