metadata
library_name: optimum
tags:
- onnx
- quantized
- int8
- intent-classification
base_model: rbojja/intent-classification-small
Intent Classification ONNX Quantized
Quantized ONNX version for fast inference.
Usage
from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import AutoTokenizer
model = ORTModelForFeatureExtraction.from_pretrained("pythn/intent-classification-onnx-quantized")
tokenizer = AutoTokenizer.from_pretrained("pythn/intent-classification-onnx-quantized")
text = "I want to book a flight"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
Performance
- ~4x smaller size
- 2-4x faster inference
- Minimal accuracy loss