multilabel_lora_distilbert_classifier_tuned_ru
This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3658
- Accuracy: 0.7845
- F1: 0.7857
- Precision: 0.7997
- Recall: 0.7845
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.993596574084884e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.0622 | 1.0 | 727 | 0.9090 | 0.6025 | 0.5923 | 0.6149 | 0.6025 |
0.9449 | 2.0 | 1454 | 0.7451 | 0.6891 | 0.6855 | 0.6950 | 0.6891 |
0.7018 | 3.0 | 2181 | 0.6176 | 0.7359 | 0.7354 | 0.7377 | 0.7359 |
0.6192 | 4.0 | 2908 | 0.5854 | 0.7758 | 0.7751 | 0.7805 | 0.7758 |
0.4921 | 5.0 | 3635 | 0.5727 | 0.8061 | 0.8050 | 0.8202 | 0.8061 |
0.4091 | 6.0 | 4362 | 0.5019 | 0.8294 | 0.8293 | 0.8301 | 0.8294 |
0.3273 | 7.0 | 5089 | 0.4864 | 0.8404 | 0.8403 | 0.8409 | 0.8404 |
0.3473 | 8.0 | 5816 | 0.4828 | 0.8514 | 0.8512 | 0.8557 | 0.8514 |
0.2821 | 9.0 | 6543 | 0.4679 | 0.8597 | 0.8597 | 0.8597 | 0.8597 |
0.2599 | 10.0 | 7270 | 0.4874 | 0.8803 | 0.8799 | 0.8823 | 0.8803 |
0.2717 | 11.0 | 7997 | 0.4551 | 0.8831 | 0.8829 | 0.8832 | 0.8831 |
0.2211 | 12.0 | 8724 | 0.4602 | 0.8858 | 0.8856 | 0.8859 | 0.8858 |
0.2207 | 13.0 | 9451 | 0.5086 | 0.8845 | 0.8837 | 0.8862 | 0.8845 |
0.2166 | 14.0 | 10178 | 0.4795 | 0.8941 | 0.8936 | 0.8952 | 0.8941 |
0.1782 | 15.0 | 10905 | 0.4650 | 0.8955 | 0.8951 | 0.8959 | 0.8955 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 0