File size: 1,656 Bytes
18adc9a 53f39f4 18adc9a 4f4a121 18adc9a 4f4a121 44ce8b3 4f4a121 18adc9a 0364a6e 44ce8b3 0364a6e e4f9349 0364a6e 4f4a121 0364a6e 44ce8b3 0364a6e 18adc9a 9831c5a 44ce8b3 9831c5a 44ce8b3 9831c5a 53f39f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
datasets:
- HuggingFaceTB/smollm-corpus
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
tags:
- fineweb
- t5
---
# tFINE-base-300m
An encoder-decoder (T5 architecture) pretrained with [nanoT5](https://github.com/pszemraj/nanoT5/tree/flan-dataset):
- tokenizer: sentencepiece BPE w/ byte fallback, 48k vocab (from [vocab scaling laws](https://hf.co/collections/sail/scaling-laws-with-vocabulary-6699e0cbd77a8b2870859bfe))
- data: `fineweb-edu-dedup` split of `HuggingFaceTB/smollm-corpus`
- context length: 1024 ctx
## details
Detailed info, including training logs, configs, and checkpoints can be found under `checkpoints/` in this repo.
<details>
<summary><strong>Expand hyperparameter overview</strong></summary>
1. Model:
- Dropout rate: 0.0
- Activations: `silu`, `gated-silu`
- torch compile: true
2. Data processing:
- Input length: 1024
- MLM probability: 0.15
3. Optimization:
- Optimizer: AdamW with scaling
- Base learning rate: 0.008
- Batch size: 120
- Total training steps: 80,000
- Warmup steps: 10,000
- Learning rate scheduler: Cosine
- Weight decay: 0.0001
- Gradient clipping: 1.0
- Gradient accumulation steps: 24
- Final cosine learning rate: 1e-5
4. Hardware:
- Device: RTX 4080
- Precision: bfloat16, tf32
</details>
## plots
training loss
![loss](./checkpoints/loss_over_steps.png)
<details>
<summary><strong>Expand grad and weights L2 norm plots</strong></summary>
grad norm
![grad](./checkpoints/grad_l2_over_steps.png)
weights norm
![weights](./checkpoints/weights_l2_over_steps.png)
</details>
--- |