RuBERT base fine-tuned on ruDEFT and WCL Wiki Ru datasets.
The model aims to detect definitions in a text (detecting a definition_label column in a dataset.)
import torch
from transformers import AutoTokenizer, BertForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("psytechlab/wcl-wiki_rudeft__rubert-model")
model = BertForSequenceClassification.from_pretrained("psytechlab/wcl-wiki_rudeft__rubert-model")
model.eval()
text = ["москва - это город в РФ", "хочу изучать языки"]
tokenized_text = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
with torch.no_grad():
prediction = model(**tokenized_text).logits
print(prediction.argmax(dim=1).numpy())
# [1 0]
Preprocessing
- lower_string
- remove_punct
- remove_latin
- swap_enter_to_space
- collapse_spaces
- strip_string
Training procedure
Training
The training was done with Trainier class that has next parameters:
training_args = TrainingArguments(
num_train_epochs=7,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
weight_decay=0.01,
learning_rate=3e-5,
logging_strategy="steps",
logging_steps=50,
save_strategy="epoch",
save_total_limit=5,
seed=21,
metric_for_best_model="eval_f1_macro"
)
Metrics
Metrics on combined set (ruDEFT + WCL Wiki Ru) psytechlab/rus_rudeft_wcl-wiki:
precision recall f1-score support
0 0.90 0.93 0.92 1421
1 0.87 0.81 0.84 753
accuracy 0.89 2174
macro avg 0.88 0.87 0.88 2174
weighted avg 0.89 0.89 0.89 2174
Metrics only on astromis/ruDEFT:
precision recall f1-score support
0 0.87 0.95 0.91 836
1 0.84 0.67 0.74 353
accuracy 0.86 1189
macro avg 0.85 0.81 0.82 1189
weighted avg 0.86 0.86 0.86 1189
Metrics only on astromis/WCL_Wiki_Ru:
precision recall f1-score support
0 0.95 0.92 0.93 585
1 0.89 0.93 0.91 400
accuracy 0.92 985
macro avg 0.92 0.92 0.92 985
weighted avg 0.92 0.92 0.92 985
Citation
@article{Popov2025TransferringNL, title={Transferring Natural Language Datasets Between Languages Using Large Language Models for Modern Decision Support and Sci-Tech Analytical Systems}, author={Dmitrii Popov and Egor Terentev and Danil Serenko and Ilya Sochenkov and Igor Buyanov}, journal={Big Data and Cognitive Computing}, year={2025}, url={https://api.semanticscholar.org/CorpusID:278179500} }
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for psytechlab/wcl-wiki_rudeft__rubert-model
Base model
DeepPavlov/rubert-base-cased