distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the gtzan dataset. It achieves the following results on the evaluation set:
- Loss: 1.0275
- Accuracy: 0.86
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0939 | 1.0 | 113 | 2.0040 | 0.51 |
1.2997 | 2.0 | 226 | 1.3618 | 0.62 |
1.0908 | 3.0 | 339 | 1.1472 | 0.66 |
0.6986 | 4.0 | 452 | 0.7296 | 0.81 |
0.5258 | 5.0 | 565 | 0.6688 | 0.81 |
0.3454 | 6.0 | 678 | 0.5717 | 0.82 |
0.2739 | 7.0 | 791 | 0.4986 | 0.86 |
0.0864 | 8.0 | 904 | 0.6373 | 0.83 |
0.0745 | 9.0 | 1017 | 0.5573 | 0.89 |
0.015 | 10.0 | 1130 | 0.6404 | 0.87 |
0.0052 | 11.0 | 1243 | 0.8518 | 0.84 |
0.002 | 12.0 | 1356 | 0.8975 | 0.85 |
0.0009 | 13.0 | 1469 | 0.9208 | 0.84 |
0.0006 | 14.0 | 1582 | 1.0636 | 0.86 |
0.0004 | 15.0 | 1695 | 1.0275 | 0.86 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 47
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for provetgrizzner/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert